Схема и описание преобразователя 12 220. Повышающий преобразователь напряжения на TL494

Лампочки 10.04.2024
Лампочки

В данной статье вы сможете ознакомиться с детальной пошаговой инструкцией по изготовлению инвертора переменного тока на 220 В 50Гц из автомобильного аккумулятора на 12 В. Такой прибор способен выдавать мощность от 150 до 300Вт.

Схема данного устройства достаточно простая .

Данная схема работает по принципу преобразователей типа Push-Pull. Сердцем устройства будет служить плата CD-4047 работающая как задающий генератор, а также осуществляет управление полевыми транзисторами, которые работают в режиме ключей. Всего один транзистор может быть открыт, в случае если будут открыты два транзистора в одно время, то случится замыкание, в результате которого транзисторы сгорят, также это может произойти в случае неправильного управления.


Плата CD-4047 не рассчитана на высокоточное управление полевыми транзисторами, но с данным заданием справляется отлично. Также для работы устройства потребуется трансформатор из старого ИБП на 250 или 300Вт с первичной обмоткой и средней точкой подключения плюса от источника питания.


Трансформатор имеет достаточно большое количество вторичных обмоток, вам будет нужно с помощью вольтомметра измерять все отводы и найти сетевую обмотку на 220В. Нужные нам провода будут выдавать наибольшее электросопротивление приблизительно 17 Ом, лишние отводки можете удалить.


Перед тем как начать паять желательно все еще раз перепроверить. Рекомендуется выбирать транзисторы с одной партии и одинаковыми характеристиками, конденсатор часто задающей цепи иметь небольшую утечку и узкий допуск. Такие характеристики определяются тестером для транзисторов.


Так как у платы CD-4047 нет аналогов, необходимо приобрести именно ее, а вот полевые транзисторы если есть необходимость можете поменять на n-канальные с напряжением от 60В и током минимум 35А. Подходят из серии IRFZ.

Также схема может работать с использованием биполярных транзисторов на выходе, но следует учесть, что мощность устройства станет намного меньше, если сравнивать с схемой, на которой используются «полевики».


Ограничительно затворные резисторы должны обладать сопротивлением 10-100 Ом, но предпочтительнее использовать резисторы на 22-47 Ом мощность которых составляет 250 мВт.


Часто задающая цепь собирается исключительно из элементов указанных на схеме, которая имеет точные настройки на 50Гц.


Если вы правильно соберете прибор, он будет работать с первых секунд, но при первом запуске важно подстраховаться. Для этого вместо предохранителя (смотреть схему) нужно установить резистор номинал которого составляет 5-10 Ом или лампочку на 12В, для того чтоб избежать взрыва транзисторов если были допущены ошибки.


Если устройство работает стабильно, то трансформатор буде издавать звук, но ключи не будут греться. Если все работает правильно резистор (лампочку) нужно убрать, а питание подается через предохранитель.

В среднем инвертором потребляет энергии при роботе на холостых от 150 до 300 мА в зависимости, какой источник питания и тип трансформатора.

Затем нужно замерить выдаваемое напряжение, на выходе должно быть около 210-260В, это считается нормальным показателем, поскольку инвертор не имеет стабилизации. Далее нужно проверить устройство, под нагрузкой подключив лампочку на 60 Ватт и дать поработать 10-15 секунд, ключи за это время немного нагреются, так как на них нет теплоотводов. Ключи должны греться равномерно, в случае не равномерного нагрева, нужно искать, где допущены ошибки.

Снабжаем инвертор функцией Remote Control






Главный плюсовой провод следует подключить к средней точке трансформатора, но чтобы устройство начало работать, к плате нужно подключить слаботочный плюс. Благодаря этому запустится генератор импульсов.


Пару предложений про монтаж. Все устанавливается в корпус блока питания для компьютеров, транзисторы следует установить на раздельные радиаторы.


Если будет установлен общий теплоотвод, обязательно изолируйте корпус транзисторов от радиатора. Кулер подключается к шине на 12В.


Одним из существенных недостатков данного инвертора считается отсутствие защиты от замыкания и если оно произойдет, то все транзисторы сгорят. Для того чтоб этого не допустить, на выходе обязательно нужно установить предохранитель на 1А.


Для запуска инвертора используется кнопка не большой мощности, через которую будет подаваться плюс на плату. Силовые шины трансформатора следует закрепить прямо к радиаторам транзисторов.


Если подключить к выходу преобразователя энергометр, то на нем сможете увидеть, что исходящая частота и напряжение в рамках допустимого. Если у вас получилась значение больше или меньше 50Гц ее нужно настроить, используя многооборотный переменный резистор, он установлен на плате.

Автомобильный инвертор напряжения порой бывает невероятно полезен, но большинство изделий в магазинах либо грешат качеством, либо по мощности не устраивают, а стоят при этом недёшево. Но ведь схема инвертора состоит из простейших деталей, потому мы предлагаем инструкцию по сборке преобразователя напряжения своими руками.

Корпус для инвертора

Первое, что нужно учесть — потери преобразования электричества, выделяющиеся в виде тепла на ключах схемы. В среднем эта величина составляет 2-5% от номинальной мощности устройства, но показатель этот имеет свойство расти из-за неправильного подбора или старения комплектующих.

Отвод тепла от полупроводниковых элементов имеет ключевое значение: транзисторы очень чувствительны к перегреву и выражается это в быстрой деградации последних и, вероятно, их полному отказу. По этой причине основанием для корпуса должен служить теплоотвод — алюминиевый радиатор.

Из радиаторных профилей хорошо подойдёт обычная «расчёска» шириной 80-120 мм и длиной около 300-400 мм. к плоской части профиля винтами крепятся экраны полевых транзисторов — металлические пятачки на их задней поверхности. Но и с этим не всё просто: электрического контакта между экранами всех транзисторов схемы быть не должно, поэтому радиатор и крепления изолируются слюдяными плёнками и картонными шайбами, при этом по обе стороны диэлектрической прокладки металлсодержащей пастой наносится термоинтерфейс.

Определяем нагрузку и закупаем компоненты

Крайне важно понимать, почему инвертор — это не просто трансформатор напряжения, а также почему существует столь разнообразный перечень подобных устройств. Прежде всего помните, что подключив трансформатор к источнику постоянного тока, вы ничего не получите на выходе: ток в АКБ не меняет полярности, соответственно, явление электромагнитной индукции в трансформаторе отсутствует как таковое.

Первая часть схемы инвертора — входной мультивибратор, имитирующий колебания сети для совершения трансформации. Собирается он обычно на двух биполярных транзисторах, способных раскачать силовые ключи (например, IRFZ44, IRF1010NPBF или мощнее — IRF1404ZPBF), для которых важнейший параметр — предельно допустимый ток. Он может достигать нескольких сотен ампер, но в целом вам достаточно умножить значение тока на вольтаж аккумуляторной батареи, чтобы получить ориентировочное количество ватт выходной мощности без учёта потерь.

Простой преобразователь на основе мультивибратора и силовых полевых ключей IRFZ44

Частота работы мультивибратора непостоянна, рассчитывать и стабилизировать её — пустая трата времени. Вместо этого ток на выходе трансформатора снова превращается в постоянный с помощью диодного моста. Такой инвертор может быть пригоден для питания чисто активных нагрузок — ламп накаливания или электрических нагревателей , печек.

На основе полученной базы можно собирать и другие схемы, отличающиеся частотой и чистотой выходного сигнала. Подбор компонентов для высоковольтной части схемы сделать проще: токи здесь не такие высокие, в ряде случаев сборку выходного мультивибратора и фильтра можно заменить парой микросхем с соответствующей обвязкой. Конденсаторы для нагрузочной сети следует использовать электролитические, а для цепей с низким уровнем сигнала — слюдяные.

Вариант преобразователя с генератором частоты на микросхемах К561ТМ2 в первичном контуре

Стоит также заметить, что для увеличения итоговой мощности вовсе не обязательно закупать более мощные и стойкие к нагреву компоненты первичного мультивибратора. Задачу можно решить увеличением числа преобразовательных контуров, включенных параллельно, но для каждого из них потребуется собственный трансформатор.

Вариант с пареллельным подключением контуров

Борьба за синусоиду — разбираем типовые схемы

Инверторы напряжения сегодня используются повсеместно как автолюбителями, желающими пользоваться бытовой техникой вдалеке от дома, так и обитателями автономных жилищ, питающихся солнечной энергией . И в целом можно сказать, что от сложности устройства преобразователя напрямую зависит ширина спектра токоприёмников, которые можно к нему подключить.

К сожалению, чистый «синус» присутствует только в магистральной электросети, добиться преобразования постоянного тока в него очень и очень сложно. Но в большинстве случаев этого и не требуется. Чтобы подключать электрические двигатели (от дрели до кофемолки), достаточно пульсирующего тока с частотой от 50 до 100 герц без сглаживания.

ЭСЛ, светодиодные лампы и всевозможные генераторы тока (блоки питания, зарядные устройства)более критичны к выбору частоты, поскольку именно на 50 Гц основана схема их работы. В таких случаях следует включать во вторичный вибратор микросхемы, зовущиеся генератором импульсов. Они могут коммутировать небольшую нагрузку непосредственно, либо исполнять роль «дирижёра» для серии силовых ключей выходной цепи инвертора.

Но даже такой хитрый план не сработает, если вы планируете использовать инвертор для стабильного питания сетей с массой разнородных потребителей, включая асинхронные электрические машины. Здесь чистый «синус» очень важен и реализовать такое под силу лишь преобразователям частоты с цифровым управлением сигналом.

Трансформатор: подберём или сами

Для сборки инвертора нам не хватает всего одного элемента схемы, выполняющего трансформацию низкого напряжения в высокое. Вы можете использовать трансформаторы из блоков питания персональных компьютеров и старых ИБП, их обмотки как раз рассчитаны на трансформацию 12/24-250 В и обратно, остаётся лишь правильно определить выводы.

И всё же лучше намотать трансформатор своими руками, благо что ферритовые кольца дают возможность сделать это самому и с любыми параметрами. Феррит обладает отличной электромагнитной проводимостью, а значит, потери при трансформации будут минимальными даже если провод намотан вручную и не плотно. К тому же вы легко рассчитаете необходимое количество витков и толщину провода по имеющимся в сети калькуляторам.

Перед намоткой кольцо сердечника нужно подготовить — снять надфилем острые кромки и плотно обмотать изолятором — стеклотканью, пропитанной эпоксидным клеем. Далее следует намотка первичной обмотки из толстого медного провода расчётного сечения. После набора нужного количества витков их необходимо равномерно распределить по поверхности кольца с равным интервалом. Выводы обмотки соединяются согласно схеме и изолируются термоусадкой.

Первичная обмотка покрывается двумя слоями лавсановой изоленты, затем наматывается высоковольтная вторичная обмотка и ещё один слой изоляции. Важный момент — мотать «вторичку» нужно в обратном направлении, иначе трансформатор работать не будет. В завершение к одному из отводов нужно припаять в разрыв полупроводниковый термопредохранитель, ток и температура срабатывания которого определяются параметрами провода вторичной обмотки (корпус предохранителя нужно плотно примотать к трансформатору). Сверху трансформатор обматывается двумя слоями виниловой изоляции без клейкой основы, конец закрепляется стяжкой или цианакрилатным клеем.

Монтаж радиоэлементов

Осталось собрать устройство. Поскольку компонентов в схеме не так много, можно размещать их не на печатной плате, а навесным монтажом с креплением к радиатору, то есть к корпусу устройства. К штыревым ножкам подпаиваемся моножильным медным проводом достаточно большого сечения, затем место соединения укрепляется 5-7 витками тонкой трансформаторной проволоки и небольшим количеством припоя ПОС-61. После остывания соединения оно изолируется тонкой термоусадочной трубкой.

Схемы высокой мощности и со сложным вторичным контуром могут потребовать изготовления печатной платы, на краю которой в ряд размещены транзисторы для свободного крепления к теплоотводу. Для изготовления печатки пригоден стеклотекстолит с толщиной фольги не менее 50 мкм, если же покрытие более тонкое — усиливайте цепи низкого напряжения перемычками из медного провода.

Изготовить печатную плату в домашних условиях сегодня просто — программа Sprint-Layout позволяет рисовать обтравочные трафареты для схем любой сложности, в том числе и для двухсторонних плат. Полученное изображение распечатывается лазерным принтером на качественной фотобумаге. Затем трафарет прикладывается к очищенной и обезжиренной меди, проглаживается утюгом, бумага размывается водой. Технология получила название «лазерно-утюжной» (ЛУТ) и описана в сети достаточно подробно.

Вытравливать остатки меди можно хлорным железом, электролитом или даже поваренной солью, способов предостаточно. После вытравливания припекшийся тонер нужно смыть, просверлить монтажные отверстия сверлом в 1 мм и пройтись по всем дорожкам паяльником (под флюсом), чтобы залудить медь контактных площадок и улучшить проводимость каналов.

(не TDA1555, а более серьёзные микросхемы), требуют БП с двухполярным питанием. И сложность тут возникает как раз не в самом УМЗЧ, а устройстве, которое повышало бы напряжение до нужного уровня, передавая хороший ток в нагрузку. Этот преобразователь является самой тяжелой частью самодельного автоусилителя. Однако при выполнении всех рекомендаций, вы сможете по данной схеме собрать проверенный ПН, схема которого приведена ниже. Чтоб увеличить - клац по ней.

Основа преобразователя - генератор импульсов построенный на специализированной распространённой микросхеме. Частота генерации задаётся номиналом резистора R3. Можно изменить её, добиваясь наилучшей стабильности работы и КПД. Рассмотрим подробнее устройство управляющей микросхемы TL494.

Параметры микросхемы TL494

Uпит.микросхемы (вывод 12) - Uпит.min=9В; Uпит.max=40В
Допустимое напряжение на входе DA1, DA2 не более Uпит/2
Допустимые параметры выходных транзисторов Q1, Q2:
Uнас менее 1.3В;
Uкэ менее 40В;
Iк.max менее 250мА
Остаточное напряжение коллектор-эммитер выходных транзисторов не более 1.3В.
I потребляемый микросхемой - 10-12мА
Допустимая мощность рассеивания:
0.8Вт при температуре окр.среды +25С;
0.3Вт при температуре окр.среды +70С.
Частота встроенного опорного генератора не более 100кГц.

  • генератор пилообразного напряжения DA6; частота определяется номиналами резистора и конденсатора, подключенных к 5-му и 6-му выводам;
  • источник опорного стабилизированного напряжения DA5 с внешним выходом (вывод 14);
  • усилитель ошибки по напряжению DA3;
  • усилитель ошибки по сигналу ограничения тока DA4;
  • два выходных транзистора VT1 и VT2 с открытыми коллекторами и эмиттерами;
  • компаратор "мертвой зоны" DA1;
  • компаратор ШИМ DA2;
  • динамический двухтактный D-триггер в режиме деления частоты на 2 - DD2;
  • вспомогательные логические элементы DD1 (2-ИЛИ), DD3 (2-Й), DD4 (2-Й), DD5 (2-ИЛИ-НЕ), DD6 (2-ИЛИ-НЕ), DD7 (НЕ);
  • источник постоянного напряжения с номиналом 0.1B DA7;
  • источник постоянного тока с номиналом 0,7мА DA8.
Схема управления будет запускаться в том случае, если на вывод 12 подать любое питающее напряжение, уровень которого находится в диапазоне от +7 до +40 В. Цоколёвка микросхемы TL494 на картинке ниже:


Раскачивают нагрузку (силовой трансформатор) полевые транзисторы IRFZ44N. Дроссель L1 намотан на феритовом кольце диаметром 2 см из компьютерного блока питания. Он содержит 10 витков сдвоенным проводом диаметром 1 мм которые распределены по всему кольцу. Если у вас нет кольца, его можно намотать на феритовом стержне диаметром 8 мм и длиной пару сантиметров (не критично). Рисунок платы в Lay формате - скачайте в .


Предупреждаем , от правильного изготовление трансформатора сильно зависит роботоспособность блока преобразователя. Он мотается на феритовом кольце марки 2000НМ размерами 40*25*11 мм. Сначала нужно напильником закруглить все грани, обмотать его полотняной изолентой. Первичная обмотка намотана жгутом который состоит из 5 жил толщиной 0,7мм и содержит 2*6 витков, то есть 12. Мотается она так: берем одну жилу и мотаем ею 6 витков равномерно распределенных по кольцу, потом следующую мотаем вплотну к первой и так все 5 жил. На выводах жилы скручиваются. Потом на свободной от проводов части кольца начинаем мотать вторую половину первичной обмотки таким же образом. Получаем две равноценных обмотки. После этого обматываем кольцо изолентой и мотаем вторичную обмотку проводом 1,5мм 2*18 витков так же как и первичку. Чтобы при первом пуске ничего не сгорело, надо включать через резисторы Ом на 100 в каждом плече, а первичку трансформатора через лампу на 40-60 Ватт и все будет гуд даже при случайных ошибках. Небольшое дополнение: в схеме блока фильтров есть небольшой дефект, детали с19 r22 следует поменять местами, так как при вращении фазы на осциллографе появляется затухание амплитуды сигнала. В общем этот повышающий преобразователь напряжения можно смело рекомендовать для повторения, так как успешно собран он был уже многими радиолюбителями.

Инвертор 12V/220V вещь на хозяйстве нужная. Иногда просто необходимая: сеть, допустим, пропала, а телефон разряжен и в холодильнике мясо. Спрос определяет предложение: за готовые модели на 1кВт и более, от которых можно запитывать любые электроприборы, придется выложить где-то от $150. Возможно, более $300. Однако сделать преобразователь напряжения своими руками в наше время дело доступное каждому, кто умеет паять: собрать его из готового набора компонент обойдется втрое-вчетверо дешевле + немного работы и металла из подручного хлама. Если есть для автомобильных аккумуляторных батарей (АКБ), можно уложиться вообще в 300-500 руб. А если имеются еще и начальные радиолюбительские навыки, то, порывшись в загашниках, вполне возможно сделать инвертор 12V DC/220V AC 50Hz на 500-1200 Вт вовсе даром. Рассмотрим возможные варианты.

Варианты: глобально

Преобразователь напряжения 12-220 В для питания нагрузки до 1000 Вт и более в целом можно сделать самостоятельно такими способами (в порядке повышения затрат):

  1. Оформить в корпус с теплоотводом готовый блок с Avito, Ebay или AliExpress. Ищется по запросу «inverter 220» или «inverter 12/220»; можно сразу добавить требуемую мощность. Обойдется прим. вдвое дешевле такого же заводского. Электротехнических навыков не нужно, но – см. ниже;
  2. Собрать такой же из набора: печатная плата + «россыпь» компонент. Приобретается там же, но к запросу добавляется diy, что значит под самосборку. Цена еще прим. в 1,5 раза ниже. Нужны начальные навыки в радиоэлектронике: пользоваться мультиметром, знание разводок (распиновок) выводов активных элементов или умение их искать, правил включения в схему полярных компонент (диодов, электролитических конденсаторов) и умение определять, на какой ток какого сечения нужны провода;
  3. Приспособить под инвертор компьютерный источник бесперебойного питания (ИБП, UPS). Исправный ИБП б/у без штатной АКБ можно найти за 300-500 руб. Навыков не нужно никаких – к ИБП просто подключается авто АКБ. Но заряжать ее придется отдельно, также см. ниже;
  4. Выбрать способ преобразования, схему (см. далее) сообразно своим потребностям и наличию деталей, рассчитать и собрать полностью самостоятельно. Возможно совсем даром, но кроме начальных электронных навыков понадобится умение пользоваться некоторыми специальными измерительными приборами (тоже см. далее) и производить простейшие инженерные расчеты.

Из готового модуля

Способы сборки по пп. 1 и 2 на самом деле не такие уж простые. Корпуса готовых заводских инверторов служат одновременно и теплоотводами для мощных транзисторных ключей внутри. Если брать «полуфабрикат» или «россыпь», то корпуса к ним не будет: при теперешней себестоимости электроники, ручного труда и цветных металлов разница в ценах объясняется как раз отсутствием второго и, возможно, третьего. Т.е., радиатор для мощных ключей придется делать самому или искать готовый алюминиевый. Его толщина в месте установки ключей должна быть от 4 мм, а площади на каждый ключ должно приходиться от 50 кв. см. на каждый кВт отдаваемой мощности; с обдувом от компьютерного вентилятора-кулера на 12 В 110-130 мА – от 30 кв. см*кВт*ключ.

Напр., в наборе (модуле) 2 ключа (их видно, они торчат из платы, см. слева на рис.); модули с ключами на радиаторе (справа на рис.) стоят дороже и рассчитаны на определенную, как правило, не очень большую мощность. Кулера нет, мощность нужна 1,5 кВт. Значит, нужен радиатор от 150 кв. см. Кроме него еще установочные комплекты для ключей: изолирующие теплопроводящие прокладки и фурнитура под крепежные винты – изолирующие чашечки и шайбы. Если модуль с теплозащитой (между ключами будет торчать еще какая-то фитюлька – термодатчик), то немного термопасты для приклеивания его к радиатору. Провода – само собой, см. далее.

Из ИБП (UPS)

Инвертор 12В DC/220 В AC 50 Гц, к которому можно подключать любые приборы в пределах допустимой мощности, делается из компьютерного ИБП совсем просто: штатные провода к «своей» АКБ заменяются длинными с зажимами под клеммы авто АКБ. Сечение проводов рассчитывается исходя из допустимой плотности тока 20-25 А/кв. мм, см. также далее. Но вот из-за нештатной батареи могут возникнуть проблемы – с нею же, а она дороже и нужнее преобразователя.

В ИБП применяются тоже свинцово-кислотные АКБ. Это на сегодня единственно широко доступный вторичный химический источник электропитания, способный регулярно отдавать большие токи (экстратоки), не «убиваясь» полностью за 10-15 циклов заряд-разряд. В авиации используются серебряно-цинковые АКБ, которые еще мощнее, но они чудовищно дороги, в широкий оборот не выпускаются, а их ресурс по бытовым меркам ничтожен – ок. 150 циклов.

Разряд кислотных АКБ четко отслеживается по напряжению на банку, и контроллер ИБП не даст «чужой» батарее разрядиться сверх меры. Но в штатных АКБ ИБП электролит гелевый, а в автоаккумуляторах жидкий. Режимы заряда в том и другом случае существенно отличаются: сквозь гель нельзя пропускать такие токи, как сквозь жидкость, а в жидком электролите при слишком малом токе заряда подвижность ионов будем мала и они не все вернутся на свои места в электродах. В результате ИБП будет хронически недозаряжать авто АКБ, она скоро засульфатируется и придет в полную негодность. Поэтому в комплект к инвертору на ИБП нужно зарядное устройство для аккумуляторов. Сделать его своими руками можно, но это уже другая тема.

Батарея и мощность

От АКБ зависит и пригодность преобразователя для той или иной цели. Повышающий инвертор напряжения не берет энергию для потребителей из «темной материи» Вселенной, черных дыр, духа святого или откуда-то еще просто так. Только – из АКБ. А от нее он возьмет мощность, отдаваемую потребителям, деленную на КПД самого преобразователя.

Если вы увидите на корпусе фирменного инвертора «6800W» или более – верьте глазам своим. Современная электроника позволяет поместить в объеме сигаретной пачки устройства и помощнее. Но, допустим, нам нужна мощность в нагрузке 1000 Вт, а в распоряжении есть обычный автоаккумулятор на 12 В 60 А/ч. Типовое значение КПД инвертора – 0,8. Значит, от батареи он возьмет ок. 100 А. На такой ток нужны и провода сечением от 5 кв. мм (см. выше), но не это тут главное.

Автолюбители знают: гонял стартер 20 мин – покупай новый аккумулятор. Правда, в новых машинах есть ограничители времени его работы, так что, возможно, и не знают. И точно не все знают, что стартер легковушки, раскрутившись, берет ток ок. 75 А (в течение 0,1-0,2 с при запуске – до 600 А). Простейший расчет – и выходит, что, если в инверторе нет автоматики, ограничивающей разряд батареи, то наша за 15 мин сядет полностью. Так что выбирайте или конструируйте свой преобразователь с учетом возможностей наличной АКБ.

Примечание: из этого следует огромное преимущество преобразователей 12/220 в на основе компьютерных ИБП – их контроллер не даст полностью посадить батарею.

Ресурс кислотных АКБ заметно не уменьшается, если они разряжаются 2-х часовым током (12 А для 60 А/ч, 24 А для 120 А/ч и 42 А для 210 А/ч). С учетом КПД преобразования это дает допустимую долговременную мощность нагрузки в прим. 120 Вт, 230 Вт и 400 Вт соотв. Для 10 мин. нагрузки (напр., для запитки электроинструмента) она может быть увеличена в 2,5 раза, но после этого АБК должна отдохнуть не менее 20 мин.

В целом итог получается не совсем уж плохой. Из обычного бытового электроинструмента только болгарка может брать 1000-1300 Вт. Остальные, как правило, обходятся мощностью до 400 Вт, а шуруповерты до 250 Вт. Холодильник от АКБ 12 В 60 А/ч через инвертор проработает 1,5-5 час; вполне достаточно, чтобы принять необходимые меры. Поэтому делать преобразователь на 1кВт для батареи 60 А/ч смысл имеет.

Что будет на выходе?

Преобразователи напряжения ради уменьшения массогабаритов устройства за редкими исключениями (см. далее) работают на повышенных частотах от сотен Гц до единиц и десятков кГц. Ток такой частоты не примет никакой потребитель, а потери его энергии в обычной проводке будут огромны. Поэтому инверторы 12-200 строятся под выходное напряжение след. видов:

  • Постоянное выпрямленное 220 В (220V AC). Пригодны для питания телефонных зарядок, большинства источников питания (ИП) планшетов, ламп накаливания, люминесцентных экономок и светодиодных. На мощность от 150-250 Вт отлично подойдут для ручного электроинструмента: потребляемая им мощность на постоянном токе немного снижается, а крутящий момент возрастает. Непригодны для импульсных блоков питания (ИБП) телевизоров, компьютеров, ноутбуков, микроволновок и т.п. мощностью более 40-50 Вт: в таких обязательно есть т. наз. пусковой узел, для нормальной работы которого сетевое напряжение должно периодически проходить через ноль. Непригодны и опасны для приборов с силовыми трансформаторами на железе и электромоторами переменного тока: стационарного электроинструмента, холодильников, кондиционеров, большей части Hi-Fi аудио, кухонных комбайнов, некоторых пылесосов, кофеварок, кофемолок и микроволновок (для последних – из-за наличия мотора вращения стола).
  • Модифицированное синусоидальное (см. далее) – пригодны для любых потребителей, кроме Hi-Fi аудио с ИБП, прочих устройств с ИБП от 40-50 Вт (см. выше) и, часто локальных охранных систем, домашних метеостанций и т.п. с чувствительными аналоговыми датчиками.
  • Чистое синусоидальное – пригодны без ограничений, кроме как по мощности, для любых потребителей электроэнергии.

Синус или псевдосинус?

С целью повышения экономичности преобразование напряжения осуществляется не только на повышенных частотах, но и разнополярными импульсами. Однако запитывать очень многие приборы-потребители последовательностью разнополярных прямоугольных импульсов (т. наз. меандром) нельзя: большие выбросы на фронтах меандра при хоть чуть-чуть реактивной нагрузке приведут к большим потерям энергии и могут вызвать неисправность потребителя. Однако проектировать преобразователь на синусодальный ток тоже нельзя – КПД не превысит прим. 0,6.

Тихая, но существенная в данной отрасли революция произошла, когда специально для инверторов напряжения были разработаны микросхемы, формирующие т. наз. модифицированную синусоиду (слева на рис.), хотя правильнее было бы назвать ее псевдо-, мета-, квази- и т.п. синусоидой. Форма тока модифицированной синусоиды ступенчатая, а фронты импульсов затянуты (фронтов меандра на экране электронно-лучевого осциллографа часто вообще не видно). Благодаря этому потребители с трансформаторами на железе или заметной реактивностью (асинхронными электромоторами) «понимают» псевдосинусоиду «как настоящую» и работают как ни в чем не бывало; Hi-Fi аудио с сетевым трансформатором на железе запитывать модифицированной синусоидой можно. Кроме того, модифицированную синусоиду возможно достаточно простыми способами сгладить до «почти настоящей», отличия которой от чистой на осциллографе на глаз еле заметны; преобразователи типа «Чистый синус» стоят ненамного дороже обычных, справа на рис.

Однако приборы с капризными аналоговыми узлами и ИБП запускать от модифицированной синусоиды нежелательно. Последние – крайне нежелательно. Дело в том, что средняя площадка модифицированной синусоиды не чистый ноль напряжения. Узел запуска ИБП от модифицированной синусоиды срабатывает нечетко и весь ИБП может не выйти из режима запуска в рабочий. Пользователь это видит сначала как безобразные глюки, а потом из девайса идет дым, как в анекдоте. Поэтому приборы в ИБП нужно запитывать от инверторов типа Чистый Синус.

Делаем инвертор сами

Итак, пока ясно, что лучше всего делать инвертор на выход в 220 В 50 Гц, хотя и о выходе AC мы тоже еще вспомним. В первом случае для контроля частоты понадобится частотомер: нормы на колебания частоты сети электропитания – 48-53 Гц. Особенно чувствительны к ее отклонениям электромоторы переменного тока: при выходе частоты питающего напряжения до пределы допуска они греются и «уходят» от номинальных оборотов. Последнее очень опасно для холодильников и кондиционеров, могут неустранимо выйти из строя вследствие разгерметизации. Но покупать, арендовать или выпрашивать на время точный и многофункциональный электронный частотомер нет нужны – нам его точность ни к чему. Вполне подойдет или электромеханический резонансный частотомер (поз. 1 на рис.), или стрелочный любой системы, поз. 2:

Стоят тот и другой недорого, продаются в интернете, а в больших городах в электротехнических спецмагазинах. Старый резонансный частотомер можно найти на на железном базаре, а тот или другой после наладки инвертора очень даже подойдут для контроля частоты сети в доме – счетчик на подключение их к сети не реагирует.

50 Гц от компьютера

В большинстве случаев питание 220 В 50 Гц требуется потребителям не особо мощным, до 250-350 Вт. Тогда основой преобразователя 12/220 В 50 Гц может послужить ИБП от старого компьютера – если, конечно, такой валяется в хламе или кто-то продает по дешевке. Отдаваемая в нагрузку мощность будет прим. 0,7 от номинальной ИБП. Напр., если на его корпусе значится «250W», то приборы до 150-170 Вт можно подключать безбоязненно. Нужно больше – надо сначала проверить на нагрузке из ламп накаливания. Выдержал 2 часа – такую мощность способен отдавать и долговременно. Как сделать инвертор 12V DC/220V AC 50Hz из компьютерного блока питания, см. видео ниже.

Видео: простой преобразователь 12-220 из компьютерного БП


Ключи

Допустим, компьютерного ИБП нет или нужна мощность побольше. Тогда важное значение приобретает выбор ключевых элементов: они должны коммутировать большие токи с наименьшими потерями на переключение, быть надежными и доступными по цене. В этом отношении биполярные транзисторы и тиристоры в данной сфере применения уверенно уходят в прошлое.

Вторая революция в инверторном деле связана с появлением мощных полевых транзисторов («полевиков») т. наз. вертикальной структуры. Впрочем, они перевернули всю технику электропитания маломощных устройств: найти в «бытовухе» трансформатор на железе становится все труднее.

Лучшие из мощных полевиков для преобразователей напряжения – с изолированным затвором и индуцированным каналом (MOSFET), напр. IFR3205, слева на рис.:

Благодаря ничтожной мощности переключения КПД инвертора с выходом DC на таких транзисторах может достигать 0,95, а с выходом AC 50 Гц 0,85-0,87. Аналоги MOSFET со встроенным каналом, напр. IFRZ44, дают КПД пониже, но стоят гораздо дешевле. Пара тех или других позволяет довести мощность в нагрузке до прим. 600 Вт; те и другие без проблем запараллеливаются (справа на рис.), что позволяет строить инверторы на мощность до 3 кВт.

Примечание: мощность потерь переключения ключей со встроенным каналом при работе на существенно реактивную нагрузку (напр., асинхронный электродвигатель) может достигать 1,5 Вт на ключ. Ключи с индуцированным каналом от этого недостатка свободны.

TL494

Третий элемент, который позволил довести преобразователи напряжения до теперешнего состояния – специализированная микросхема TL494 и ее аналоги. Все они представляют собой контроллер широтно-импульсной модуляции (ШИМ), формирующий на выходах сигнал модифицированной синусоиды. Выходы разнополярные, что позволяет управлять парами ключей. Опорная частота преобразования задается одной RC цепью, параметры которой можно менять в широких пределах.

Когда хватит постоянки

Круг потребителей тока 220 В DC ограничен, но как раз у них потребность в автономном электропитании возникает не только в аварийных ситуациях. Напр., при работе электроинструментом на выезде либо в дальнем углу своего же участка. Или присутствует всегда, скажем, у дежурного освещения входа в дом, прихожей, коридора, придомовой территории от солнечной батареи, днем подзаряжающей АКБ. Третий типичный случай – зарядка телефона на ходу от прикуривателя. Здесь мощность на выходе нужна совсем маленькая, так что инвертор может быть выполнен всего на 1 транзисторе по схеме релаксационного генератора, см. след. ролик.

Видео: повышающий преобразователь на одном транзисторе


Уже для питания 2-3 светодиодных лампочек нужна мощность побольше. КПД блокинг-генераторов при попытке «выжать» ее резко падает, и приходится переходить на схемы с отдельными времязадающими элементами или полной внутренней индуктивной обратной связью, они наиболее экономичны и содержат наименьшее количество компонент. В первом случае для коммутации одного ключа используется ЭДС самоиндукции одной из обмоток трансформатора совместно с времязадающей цепью. Во втором частотозадающим элементом является сам повышающий трансформатор за счет его собственной постоянной времени; ее величина определяется преимущественно явлением самоиндукции. Поэтому те и другие инверторы иногда называют преобразователями на самоиндукции. Их КПД, как правило, не выше 0,6-0,65, но, во-первых, схема проста и наладки не требует. Во-вторых, напряжение на выходе скорее трапецеидальное, чем меандр; «требовательные» потребители «понимают» его как модифицированную синусоиду. Недостаток – полевые ключи в таких преобразователях практически неприменимы, т.к. часто выходят из строя от бросков напряжения на первичной обмотке при коммутации.

Пример схемы с внешними времязадающими элементами дан на поз. 1 рис.:

Автору конструкции не удалось выжать из нее более 11 Вт, но судя по всему, он перепутал феррит с карбонильным железом. Во всяком случае, броневой (чашечный) магнитопровод на его же фото (см. рис. справа) никак не ферритовый. Больше он похож на старый карбонильный, окислившийся снаружи от времени, см. рис. справа. Трансформатор для этого инвертора лучше намотать на ферритовом кольце с площадью сечения по ферриту 0,7-1,2 кв. см. Первичная обмотка тогда должна содержать 7 витков провода диаметром по меди 0,6-0,8 мм, а вторичная 57-58 витков провода 0,3-0,32 мм. Это под выпрямление с удвоением, см. далее. Под «чистые» 220 В – 230-235 витков провода 0,2-0,25. В таком случае этот инвертор при замене КТ814 на КТ818 отдаст мощность до 25-30 Вт, чего достаточно для 3-4 светодиодных ламп. При замене КТ814 на КТ626 мощность в нагрузке будет ок. 15 Вт, но КПД повысится. В обоих случаях радиатор ключа – от 50 кв. см.

На поз. 2 дана схема «допотопного» преобразователя 12-220 с отдельными обмотками обратной связи. Не такая уж она архаичная. Во-первых, выходное напряжение под нагрузкой – трапеция с округленными переломами без выбросов. Это даже лучше, чем модифицированная синусоида. Во-вторых, этот преобразователь может быть без каких-либо переделок в схеме выполнен на мощность до 300-350 Вт и частоту 50 Гц, тогда выпрямитель не нужен, надо только поставить VT1 и VT2 на радиаторы от 250 кв. см. каждый. В-третьих, он бережет АКБ: при перегрузке частота преобразования падает, отдаваемая мощность уменьшается, а если нагрузить еще больше, генерация срывается. Т.е., чтобы избежать переразряда батареи, не требуется никакой автоматики.

Порядок расчета данного инвертора дан в скане на рис.:

Ключевые величины в нем – частота преобразования и рабочая индукция в магнитопроводе. Частоту преобразования выбирают исходя из материала наличного сердечника и требуемой мощности:

Тип

Магнитопровода

Индукция/частота преобразования
До 50 Вт 50-100 Вт 100-200 Вт 200-350 Вт
«Силовое» железо от трансформаторов питания толщиной 0,35-0,6 мм 0,5 Тл/(50-1000)Гц 0,55 Тл/(50-400)Гц 0,6 Тл/(50-150)Гц 0,7 Тл/(50-60)Гц
«Звуковое» железо от выходных трансформаторов УМЗЧ толщиной 0,2-0,25 мм 0,4 Тл/(1000-3000)Гц 0,35 Тл/(1000-2000)Гц - -
«Сигнальное» железо от сигнальных трансформаторов толщиной 0,06-0,15 мм (не пермаллой!) 0,3 Тл/(2000-8000)Гц 0,25 Тл/(2000-5000)Гц - -
Феррит 0,15 Тл/(5-30)кГц 0,15 Тл/(5-30)кГц 0,15 Тл/(5-30)кГц 0,15 Тл/(5-30)кГц

Такая «всеядность» феррита объясняется тем, что петля его гистерезиса прямоугольная и рабочая индукция равна индукции насыщения. Уменьшение по сравнению с типовыми расчетных значений индукции в стальных магнитопроводах вызвано резким ростом потерь на коммутацию несинусоидальных токов при ее возрастании. Поэтому с сердечника силового трансформатора старого телевизора-«гроба» на 270 Вт в этом преобразователе на 50 Гц удастся снять не более 100-120 Вт. Но – на безрыбье и рак рыба.

Примечание: если в наличии есть стальной магнитопровод заведомо завышенного сечения, не выжимайте из него мощность! Пусть лучше индукция будет меньше – КПД преобразователя возрастет, а форма выходного напряжения улучшится.

Выпрямление

Выпрямлять выходное напряжение этих инверторов лучше по схеме с параллельным удвоением напряжения (поз. 3 на рис. со схемами): компоненты для нее обойдутся дешевле, а потери мощности на несинусоидальном токе будут меньше, чем в мостовой. Конденсаторы нужно брать «силовые», рассчитанные на большую реактивную мощность (с обозначениями PE или W). Если поставить «звуковые» без этих букв, они могут просто взорваться.

50 гц? Это очень просто!

Простой инвертор на 50 Гц (поз. 4 рис. выше со схемами) интересная конструкция. У некоторых видов типовых трансформаторов питания собственная постоянная времени близка к 10 мс, т.е. половине периода 50 Гц. Подкорректировав ее времязадающими резисторами, которые будут одновременно и ограничителями тока управления ключей, можно получить на выходе сразу сглаженный меандр 50 Гц без сложных схем формирования. Подойдут трансформаторы ТП, ТПП, ТН на 50-120 Вт, но не всякие. Возможно, придется изменить номиналы резисторов и/или включить параллельно им конденсаторы на 1-22 нФ. Если частота преобразования все равно далеко от 50 Гц, разбирать и перематывать трансформатор бесполезно: склеенный ферромагнитным клеем магнитопровод распушится, и параметры трансформатора резко ухудшатся.

Этот инвертор – дачный преобразователь выходного дня. Аккумулятор машины он не посадит по тем же причинам, что и предыдущий. Но его хватит на освещение домика с верандой светодиодными лампами и телевизор или вибрационный насос в скважине. Частота преобразования налаженного инвертора при изменениях тока нагрузки от 0 до максимального не выходит за пределы технормы для сетей электропитания.

Разводят обмотки исходного трансформатора так. В типовых трансформаторах питания по четному числу вторичных обмоток на 12 или 6 В. Две из них «откладываются», а остальные распаиваются параллельно в группы из равного числа обмоток в каждой. Далее группы соединяются последовательно так, чтобы получились 2 полуобмотки на 12 В каждая, это будет низковольная (первичная) обмотка со средней точкой. Из оставшихся низковольных обмоток одна соединяется последовательно с сетевой на 220 В, это будет повышающая обмотка. Добавка к ней нужна, т.к. падение напряжения на ключах из биполярных составных транзисторах совместно с его потерями в трансформаторе может достигать 2,5-3 В, и выходное напряжение окажется заниженным. Дополнительная обмотка доведет его до нормы.

DC от микросхемы

КПД описанных преобразователей не превышает 0,8, а частота в зависимости от тока нагрузки заметно плавает. Предельная мощность нагрузки менее 400 Вт, так что пришла пора вспомнить о современных схемных решениях.

Схема простого преобразователя 12 В DC/ 220 В DC на 500-600 Вт дана на рис.:

Основное его назначение – питание ручного электроинструмента. К качеству подводимого напряжения такая нагрузка не требовательна, поэтому ключи взяты подешевле; подойдут также IFRZ46, 48. Трансформатор мотается на феррите сечением 2-2,5 кв. см; подойдет сердечник силового трансформатора от компьютерного ИБП. Первичная обмотка – 2х5 витков жгута из 5-6 обмоточных проводов диаметром по меди 0,7-0,8 мм (см. ниже); вторичная – 80 витков такого же провода. Налаживание не требуется, но контроля разряда батареи нет, так что в процессе работы нужно прицепить к ее клеммам мультиметр и не забывать на него поглядывать (то же касается и всех прочих самодельных инверторов напряжения). Если напряжение упало до 10,8 В (1,8 В на банку) – стоп, выключаемся! Упало до1,75 В на банку (10,5 В вся батарея) – это уже пошла сульфатация!

Как мотать трансформатор на кольце

На качественные характеристики инвертора, в частности, на его КПД, довольно сильно влияет поле рассеяния его трансформатора. Принципиальное решение для его уменьшения давно известно: первичную обмотку, «накачивающую» магнитопровод энергией, размещают вплотную к нему; вторичные над ней по убыванию их мощности. Но техника такое дело, что теоретические принципы в конкретных конструкциях иной раз приходится выворачивать наизнанку. Один из законов Мэрфи гласит прим. так: если железка ну вот все равно не хочет работать как надо, попробуй сделать в ней все наоборот. В полной мере это относится к трансформатору повышенной частоты на ферритовом кольцевом магнитопроводе с обмотками из относительно толстого жесткого провода. Мотают трансформатор преобразователя напряжения на ферритовом кольце так:

  • Изолируют магнитопровод и с помощью намоточного челнока наматывают на него вторичную повышающую обмотку, укладывая витки как можно плотнее, поз. 1 на рис.:

  • Плотно обтягивают «вторичку» скотчем, поз 2.
  • Готовят 2 одинаковых жгута проводов для первичной обмотки: наматывают количество витков половины низковольтной обмотки тонким негодным проводом, снимают его, замеряют длину, отрезают нужное количество отрезков обмоточного провода с запасом и собирают их в жгуты.
  • Дополнительно изолируют вторичную обмотку до получения относительно ровной поверхности.
  • Мотают «первичку» 2-мя жгутами сразу, располагая провода жгутов лентой и равномерно распределяя витки по сердечнику, поз. 3.
  • Вызванивают концы жгутов и соединяют начало одного с концом другого, это будет средняя точка обмотки.

Примечание: на электрических принципиальных схемах начала обмоток, если это имеет значение, обозначаются точкой.

50 Гц сглаженные

Модифицированная синусоида от ШИМ-контроллера не единственный способ получить на выходе инвертора 50 Гц, пригодные для подключения любых бытовых потребителей электричества, да и ту не мешало бы еще «пригладить». Простейший из них – старый добрый трансформатор на железе, он хорошо «гладит» за счет своей электрической инерции. Правда, найти магнитопровод на более чем 500 Вт становится все труднее. Включается такой разделительный трансформатор на низковольный выход инвертора, а к его повышающей обмотке подключается нагрузка. По этой схеме, кстати, построено большинство компьютерных ИБП, так что они для такой цели вполне подходят. Если же мотать трансформатор самому, то рассчитывается он аналогично силовому, но со след. особенностями:

  • Первоначально определенная величина рабочей индукции делится на 1,1 и применяется во всех дальнейших расчетах. Так нужно, чтобы учесть т. наз. коэффициент формы несинусоидального напряжения Кф; у синусоиды Кф=1.
  • Повышающая обмотка рассчитывается сначала как сетевая на 220 В для заданной мощности (или определенной по параметрам магнитопровода и величине рабочей индукции). Затем найденное количество ее витков умножается на 1,08 для мощности до 150 Вт, на 1,05 для мощностей 150-400 Вт и на 1,02 для мощностей 400-1300 Вт.
  • Половина низковольтной обмотки рассчитывается как вторичная на напряжение 14,5 В под ключи биполярные или со встроенным каналом и на 13,2 В для ключей с индуцированным каналом.

Примеры схемных решений преобразователей 12-200 В 50 Гц с разделительным трансформатором даны на рис.:

На той, что слева, ключами управляет задающий генератор на т. наз. «мягком» мультивибраторе, он уже генерирует меандр в заваленными фронтами и сглаженными переломами, так что дополнительных мер сглаживания не требуется. Нестабильность частоты мягкого мультивибратора выше, чем обычного, поэтому для ее подстройки нужен потенциометр P. С ключами на КТ827 можно снять мощность до 200 Вт (радиаторы – от 200 кв. см без обдува). Ключи на КП904 из старого хлама или IRFZ44 позволяют увеличить ее до 350 Вт; одинарные на IRF3205 до 600 Вт, а спаренные на них же до 1000 Вт.

Инвертор 12-220 В 50 Гц с задающим генератором на TL494 (справа на рис.) частоту держит железно во всех мыслимых немыслимых условиях эксплуатации. Для более эффективного сглаживания псевдосинусоиды используется явление т. наз. безразличного резонанса, при котором фазовые соотношения токов и напряжений в колебательном контуре становятся такими же, как при остром резонансе, но их амплитуды заметно не увеличиваются. Технически это решается просто: к повышающей обмотке подключают сглаживающий конденсатор, значение емкости которого подбирают по наилучшей форме тока (не напряжения!) под нагрузкой. Для контроля формы тока в цепь нагрузки на мощность 0,03-0,1 от номинальной включают резистор на 0,1-0,5 Ом, к которому и подключают осциллограф с закрытым входом. Сглаживающая емкость не уменьшает КПД инвертора, но пользоваться для настройки компьютерными программами симуляции НЧ осциллографа нельзя, т.к. вход звуковой карты, которая в них используется, не рассчитан на амплитуду в 220х1,4 = 310 В! Ключи и мощности такие же, как в пред. случае.

Более совершенная схема преобразователя 12-200 В 50 Гц дана на рис.:

В ней используются сложные составные ключи. Для улучшения качества выходного напряжения в ней используется тот факт, что эмиттер планарно-эпитаксиальных биполярных транзисторов легирован много сильнее базы и коллектора. Когда TL494 подаст закрывающий потенциал, напр., на базу VT3, ток его коллектора прекратится, но за счет рассасывания объемного заряда эмиттера он замедлит запирание T1 и выбросы напряжения от ЭДС самоиндукции Tr поглотятся цепями L1 и R11C5; они же больше «наклонят» фронты. Выходная мощность инвертора определяется габаритной мощностью Tr, но не более 600 Вт, т.к. использовать в данной схеме парные мощные ключи нельзя – разброс величины заряда затвора MOSFET транзисторов довольно значительный и переключение ключей будет нечетким, отчего форма выходного напряжения может даже ухудшиться.

Дроссель L1 это 5-6 витков провода диаметром от 2,4 мм по меди, намотанных на отрезок ферритового стержня диаметром 8-10 м и длиной 30-40 мм с шагом 3,5-4 мм. Магнитопровод дросселя не должен быть замкнут! Налаживание схемы дело довольно кропотливое и требующее немалого опыта: нужно подобрать L1, R11 и C5 по наилучшей форме выходного тока под нагрузкой, как в пред. случае. Зато и Hi-Fi, запитанное от этого преобразователя, остается «хайфаем» на самый взыскательный слух.

А нельзя ли без трансформатора?

Уже обмоточный провод для мощного трансформатора на 50 Гц влетит в копеечку. Более-менее доступны магнитопроводы от «гробовых» трансформаторов до 270 Вт габаритных, но в инверторе из такого более 120-150 Вт не выжмешь, а КПД будет в лучшем случае 0,7, т.к. «гробовые» магнитопроводы навиты из толстой ленты, потери на вихревые токи в которой при несинусоилальном напряжении на обмотках большие. Найти магнитопровод ШЛ из тонкой ленты, способный отдать более 350 Вт при индукции 0,7 Тл вообще проблематично, обойдется он дорого, а весь преобразователь получится огромным и неподъемным. Трансформаторы ИБП не рассчитаны на частую работу в длительном режиме – они греются и магнитопроводы их в инверторах довольно скоро деградируют – магнитные свойства сильно ухудшаются, мощность преобразователя падает. Есть ли выход?

Да, и такое решение нередко применяется в фирменных преобразователях. Это – электрический мост из ключей на высоковольтных силовых полевых транзисторах с напряжением пробоя от 400 В и током стока более 5 А. Подойдут из первичных цепей компьютерных ИБП, а из старого хлама – КП904 и т.п.

Мост запитывается постоянкой 220 В DC от несложного инвертора 12-220 с выпрямлением. Плечи моста открываются парами наперекрест поочередно, и ток в нагрузке, включенной в диагональ моста, меняет направление; цепи управления всех ключей гальванически разделены. В промышленных конструкциях ключи управляются от спец. ИМС с развязкой оптопарами, но в любительских условиях то и другое можно заменить дополнительным маломощным инвертором 12 В DC – 12 В 50 Гц, работающим на маленький трансформатор на железе, см. рис. Магнитопровод для него можно взять от китайского базарного маломощного трансформатора питания. За счет его электрической инерции качество выходного напряжения получается даже лучше, чем модифицированная синусоида.


Начальная цель для проекта была сделать мощный 12 на 220 преобразователь. Основное достоинство данного устройства, это простота сборки, выполненная по двухтактной схеме. Всего 2 полевых транзистора, без каких-либо задающих генераторов. Даже, если опыта работы в таком деле, как сборка преобразователя, но есть огромное желание попробовать, то в этом нет ничего сложного, вы можете собрать без труда его своими руками .

Необязательно покупать какие-то детали для устройства, все компоненты можно найти у себя дома в старой технике.

Давайте посмотрим видеоролик преобразователя:

Что касается параметров преобразователя, к сожалению, выходная частота переменная, но вы легко ее можете превратить в постоянный ток, устанавливая на выходе выпрямитель и большой конденсатор с расчетной емкостью где-то 100 микрофарат, при напряжении в 400 вольт. Рабочая частота зависит от лц-контура. В качестве катушки у нас идет первичная обмотка катушки. Установлены 2 дросселя. Обмотка не имеет отвод.


В качестве силовых ключей применены мощные канальные транзисторы высоковольтного типа. Их можно заменить на любые низковольтные. Мощность в первую очередь зависит от трансформатора и палевых транзисторов.


Что касается схемы, она вам позволит снять до 500 ватт или полкиловатта выходной мощности, при этом не будет никаких задающих цепей и прочих конструкций.

На самой плате генератора помимо транзистора установлены также стабилитроны для стабилизации затворного напряжения. Затворный ограничитель есть еще и на 470 ОМ, для конструкции подойдет от 100 до 670 ОМ можно использовать.

Помимо этого установлены 2 диода.


При использовании одного общего теплоотвода, в обязательном порядке их нужно изолировать прокладками и изолирующими шайбами.

Перегревается у вас будет чуток-дроссель, поэтому его нужно обмотать проводом с диаметром до 2 мм.

Трансформатор использовался готовый 220 вольт с первичной обмоткой. Обмотка состоит из 8 витков толстого провода.

Схема может быть без средней точки или со средней точкой.


В нашем случае подключена лампа накаливания в 11 ват. Нам ее нужно засветить полным накалом.

От постоянного тока можно запитать все указанные выше приборы. Нельзя запитывать холодильник, пылесос, микроволновку. Можно запитать зарядку от телефона, ноутбука и даже компьютер.

Рекомендуем почитать

Наверх