Типы ветродвигателей. Самодельный ветрогенератор для дома и дачи: принципы работы, схемы, какой и как делать Генераторы с ротором Дарье

Расчет  20.09.2023
Расчет 

Содержание статьи

ВЕТРОДВИГАТЕЛЬ, устройство, преобразующее энергию ветра в энергию вращательного движения. Основным рабочим органом ветродвигателя является вращающийся агрегат – колесо, приводимое в движение ветром и жестко связанное с валом, вращение которого приводит в действие оборудование, выполняющее полезную работу. Вал устанавливается горизонтально или вертикально. Ветродвигатели обычно используются для выработки энергии, потребляемой периодически: при накачке воды в емкости, помоле зерна, во временных, аварийных и местных сетях электропитания.

Историческая справка.

Хотя приземные ветры дуют не всегда, меняют свое направление и сила их непостоянна, ветродвигатель представляет собой одну из древнейших машин для получения энергии из природных источников. Из-за сомнительной надежности древних письменных сообщений о ветродвигателях не вполне ясно, когда и где такие машины появились впервые. Но, судя по некоторым записям, они существовали уже до 7 в. н.э. Известно, что в Персии их применяли в 10 в., а в Западной Европе первые устройства этого типа появились в конце 12 в. В течение 16 в. окончательно сформировался шатровый тип голландской ветряной мельницы. Особых изменений в их конструкции не наблюдалось вплоть до начала 20 в., когда в результате исследований были значительно усовершенствованы формы и покрытия крыльев мельниц. Поскольку низкооборотные машины громоздки, во второй половине 20 в. стали строить высокооборотные ветродвигатели, т.е. такие, ветроколеса которых могут совершать большое число оборотов в минуту с высоким коэффициентом использования энергии ветра.

Современные типы ветродвигателей.

В настоящее время применяются три основных типа ветродвигателей – барабанный, крыльчатый (винтового типа) и роторный (с S-образным профилем репеллера).

Барабанный и крыльчатый.

Хотя ветроколесо барабанного типа имеет наименьший коэффициент использования энергии ветра по сравнению с другими современными репеллерами, применяется оно наиболее широко. На многих фермах с его помощью качают воду, если по какой-либо причине нет сетевого электричества. Типичная форма такого колеса с лопастями из листового металла приведена на рис. 1. Ветроколеса барабанного и крыльчатого типа вращаются на горизонтальном валу, так что их необходимо поворачивать на ветер, чтобы получить наилучшие эксплуатационные характеристики. Для этого им придается руль направления – лопасть, расположенная в вертикальной плоскости, чем и обеспечивается разворот ветроколеса на ветер. Диаметр колеса крупнейшего в мире ветродвигателя крыльчатого типа составляет 53 м, максимальная ширина его лопасти равна 4,9 м. Ветроколесо напрямую соединено с электрическим генератором мощностью 1000 кВт, которая развивается при скорости ветра не менее 48 км/ч. Его лопасти регулируются таким образом, что скорость вращения ветроколеса остается постоянной и равной 30 об/мин в диапазоне скоростей ветра от 24 до 112 км/ч. Благодаря тому, что в местности, где располагают такие ветродвигатели, ветры дуют довольно часто, ветроэнергетическая установка обычно вырабатывает ~50% максимальной мощности и питает общественную электросеть. Крыльчатые ветродвигатели широко применяются в отдаленных сельских районах для обеспечения электроэнергией ферм, в том числе для зарядки аккумуляторов систем радиосвязи. Их также используют в бортовых энергетических установках самолетов и управляемых ракет.

S-образный ротор.

Установленный на вертикальном валу S-образный ротор (рис. 2) хорош тем, что ветродвигатель с таким репеллером не надо выводить на ветер. Хотя крутящий момент на его валу меняется от минимального до одной трети от максимального значения за полоборота, он не зависит от направления ветра. Когда гладкий круговой цилиндр вращается, находясь под действием ветра, на тело цилиндра действует сила, перпендикулярная направлению ветра. Это явление называется эффектом Магнуса, в честь немецкого физика, который его изучал (1852). В 1920–1930 А.Флеттнер применил вращающиеся цилиндры (роторы Флеттнера) и S-образные роторы взамен лопастных ветроколес, а также как движители корабля, который совершил переход из Европы в Америку и обратно.

Коэффициент использования энергии ветра.

Мощность, получаемая от ветра, обычно мала – менее 4 кВт развивает агрегат устаревшего типа голландской ветряной мельницы при скорости ветра 32 км/ч. Мощность потока ветра, которую можно использовать, образуется из кинетической энергии масс воздуха, проносящихся в единицу времени перпендикулярно площади заданного размера. В ветродвигателе эта площадь определяется наветренной поверхностью репеллера. При учете высоты над уровнем моря, давления воздуха на ней и его температуры располагаемая мощность N (в кВт) на единицу площади определяется уравнением

N = 0,0000446 V 3 (м/с).

Коэффициент использования энергии ветра определяется обычно как отношение мощности, развиваемой на валу ветродвигателя, к располагаемой мощности ветрового потока, воздействующего на наветренную поверхность ветроколеса. Максимальным этот коэффициент становится при определенном соотношении между скоростью внешнего края лопасти ветроколеса w и скорости ветра u ; значение этого соотношения w /u зависит от типа ветродвигателя. Коэффициент использования энергии ветра зависит от вида ветроколеса и составляет от 5–10% (голландская мельница с плоскими крыльями, w /u = 2,5) до 35–40% (профилированный крыльчатый репеллер, 5 Ј w /u Ј 10).

Ветроэнергетикой интересуются многие. Причины такого интереса разные: для кого-то это одна из немногих возможностей обеспечить дом электричеством; кто-то рассматривает ветряк как резервный источник питания; другие хотят получить полную независимость от центральных электросетей. На сегодняшний день такая возможность есть – необходимо установить на участке ветрогенератор и не очень сложное вспомогательное оборудование. Однако некоторые нюансы все же есть, о которых следует знать заранее.

Кинетическая энергия ветра может быть преобразована как в электрическую, так и в механическую или тепловую энергию. Таким образом, при помощи ветра можно не только обеспечить дом электричеством, но и, к примеру, поднять воду со скважины, без промежуточной трансформации кинетической энергии ветрового потока в электрическую.

В том или ином случае понадобится ветроэнергетическая установка, включающая в себя ветродвигеталь, укомплектованный преобразователем энергии и аккумулятором. Преобразователем энергии могут быть электрогенераторы, гидронасосы, компрессоры. К примеру, если ветроэнергетическая установка будет служить только для полива, то нет смысла вначале получать электричество, а затем использовать его для питания электронасосов. Лишнее звено трансформации энергии снижает КПД ветроэнергетической установки. В хозяйственной практике в основном находят применение только два типа преобразователей – электрический и механический (для перекачки воды). В первом случае речь идет о накоплении электрической энергии, которая используется потребителями; во втором о ветронасосах, обеспечивающих необходимое давление в системах капельного орошения, дождевальных установок, бытовых водопроводах.

Типы ветродвигателей

Любой ветродвигатель имеет лопасти, которые, обладая парусностью, принимают на себя часть кинетической энергии ветрового потока. Форма этих лопастей и конструкция ветроколеса может быть разной. Различают три основных типа ветродвигателей: крыльчатые (похожие на пропеллер), роторные (карусельные) и барабанные. Наиболее распространены крыльчатые рабочие органы ветроколеса, ось вращения которых расположена горизонтально. Их доля составляет не менее 90% от общего числа ветродвигателей.

Именно такие «ветряки» в большом количестве можно встретить в Европе, и особенно в Нидерландах. Ветроэнергетические проекты этой страны, стартовавшие еще в средине прошлого века, уже многократно окупили себя. Вопреки расхожему мнению, что ветроэнергетическая установка не способна вырабатывать достаточное количество электроэнергии, адекватное затратам на ее установку и обслуживание, в Голландии целые поселки питаются исключительно от «ветряков». Одна мощная ветроэнергетическая установка способна обеспечить в полном объеме электричеством несколько сот(!) коттеджей. Ветродвигатель такой установки установлен на очень прочную и устойчивую конструкцию, в основе которой лежит заглубленная на 15-20 метров массивная железобетонная плита. Она, как корень дерева, удерживает высокую башню, внутри которой находится лестница, позволяющая обслуживать ветроагрегат. При этом не используются никакие растяжки.

Крыльчатые ветродвигатели состоят из ветроколеса, головки, механизма ориентации (хвоста) и башни (или мачты – в зависимости от размера).

Ветроколесо может быть оснащено от одной до восьми и более лопастей. В зависимости от их количества, ветродвигатели делятся на быстроходные (до 4 лопастей), средней скорости хода (4…8 лопастей) и тихоходные (от 8 лопастей).


Головка сконструирована таким образом, чтобы она могла поворачиваться вокруг вертикальной оси башни. Ее форма зависит от мощности и назначения ветродвигателя – в свою очередь факторы, определяющие систему передаточного механизма, его конструкцию и число ступеней.

Хвост работает по принципу флюгера и разворачивает головку по ветру. Площадь его поверхности зависит от аэродинамических параметров лопастей ветроколеса.

Башня поднимает ветродвигатель выше всех препятствий, которые снижают напорный поток ветра, а также обеспечивает безопасность вращения лопастей. При скорости ветра превышающей 35-45 м/с срабатывает тормозная система, полностью останавливающая ветродвигатель.

Количество лопастей крыльчатого ветроколеса зависит от средней скорости ветра в районе установки ветроэнергетической установки. На открытых пространствах, морских и океанических побережьях используют малолопастные крыльчатые ветродвигатели, для запуска которых необходима минимальная скорость ветра 5-8 м/с. Это наиболее простые по конструкции ветродвигатели, имеющие высокий КПД, однако создающие немало шума.

В районах, где скорость ветра редко превышает 5 м/с, как правило, рекомендуют устанавливать многолопастные ветродвигатели. Они работают практически бесшумно, но также и имеют КПД ниже, чем малолопастные; кроме того, на изготовление многолопастных ветродвигателей уходит больше материалов, т.к. во время работы ветродвигатель данного типа испытывает повышенные гироскопические нагрузки.


Роторные ветродвигатели (они же карусельные) также имеют простую конструкцию, но обладают гораздо меньшим КПД - максимум 18%. Проблема их использования состоит еще и в том, что в них применяются довольно редкие многополюсные электрогенераторы. Роторные ветродвигатели имеют вертикальную ось вращения и лопасти, работающие по типу паруса. Одно из преимуществ такого типа ветродвигателей – отсутствие механизма ориентации. Вертикальная ось вращения позволяет безопасно использовать роторное ветроколесо при малой высоте башни. Такие ветродвигатели запускаются при малой скорости ветра и не шумят. Главный недостаток роторных ветродвигателей в малом коэффициенте использования ветра, поскольку в работе постоянно задействована только часть лопастей; остальные либо преодолевают сопротивление ветра, либо изолируются от него зонтом (кожухом).

За последнее десятилетие рынок ветроэнергетических установок (ВЭУ) существенно пополнился в первую очередь компактными моделями, которые могли бы найти применение в усадьбах и на фермах. Они рассчитаны на небольшую начальную скорость ветра 2,5…3 м/с и установку ветроагрегата на высоте 6…17 м. Номинальное количество электроэнергии вырабатывается уже при 6…8 м/с (скорость вращения ветротурбины 250…300 об/м.).

Ветрогенераторы в работе

Скорость ветра не является постоянной и поэтому получить от преобразователя «чистую» электрэнергию со стабильными параметрами не получается. Генератор, как правило, вырабатывает напряжение 0…56 В. Генерируемая «грязная» энергия аккумулируется батареями, которыми укомплектована ВЭУ, чем и обеспечивается бесперебойная работа системы. В период сильных ветров установка работает на пределе мощности и запасает энергию впрок, чтобы отдавать ее в безветрие или при слабом ветре. Нередко вместе с ветродвигателем используются солнечные батареи, которые обеспечивают заряд аккумуляторов в летний период, когда ветры особенно слабы.


Для преобразования постоянного тока аккумуляторов в переменный с параметрами 220В/50 Гц, ВЭУ оснащаются инверторами.

С целью преодоления пиковых нагрузок ВЭУ сочетают с вспомогательными источниками электроэнергии, такими как дизельные и бензиновые генераторы, а также (в качестве вспомогательной) централизованную электросеть.

Индивидуальные ветроэнергетические установки малой мощности постепенно становятся дешевле и эффективнее. Вместе с этим увеличиваются и перспективы их применения для частных домов и фермерских хозяйств. К примеру, для коттеджей в отдаленных районах немаловажно располагать автономной ветроэнергетической установкой мощностью 20-50 кВт, которая гарантирует работу основного электрооборудования при отсутствии всех иных источников.

Ветронасосы

Поднимать воду из глубины при помощи ветра люди научились давно, однако этот способ не забыт и сегодня, особенно там, где недоступны источники электроэнергии. Идея изобретения проста – использовать энергию ветра для привода водяного насоса.

Наибольшее распространение ветронасосы получили в США. Когда-то они решали судьбу экономики страны, а сегодня стали еще и неким культовым сооружением традиционной обстановки американского ранчо.


На постсоветском пространстве ветронасосы – большая редкость, хотя в период садово-огородного бума средины 80-ых их популярность возросла. Обстоятельства заставили. В наши дни также складываются предпосылки к обращению к уже позабытым «Ромашкам» и «Водолеям», поскольку доля электроэнергии в себестоимости овощной продукции растет из года в год.

Ветромеханический агрегат «Ромашка» был разработан НПО «Ветроэн». Впревые его чертежи были опубликованы в журнале «Моделист-конструктор» в 1988 году, в котором излагалось руководство по самостоятельному изготовлению ветронасоса.

Оба агрегата имеют максимально упрощенную конструкцию. Они предназначены для всасывания воды с глубины до 8 м и работают уже при скорости ветра 3 м/с. Ветроколесо «Ромашки» имеет 12 лопастей и приводит в движение диафрагму насоса посредством кулочково-рычажного механизма с вертикальной тягой, проходящей внутри опоры ветродвигателя.

При скорости ветра 5 м/с ветронасос «Ромашка» поднимает 8-метровой глубины до 300 литров воды в час, и способен доставить ее на высоту до 10 метров. В паре с системой капельного полива данный агрегат предоставляет реальную возможность возделывания огородных культур на отдаленных участках, при наличии там водоема или скважины глубиной до 8 метров.

В настоящее время имеется много систем ветродвигателей, как с горизонтальной, так и с вертикальной осью вращения. Отличаются они друг от друга не только внешним видом и устройством, но и техническими возможностями в зависимости от того, для каких целей они применяются. По устройству приемника энергии ветра и по расположению его в воздушном потоке различают несколько систем ветродвигателей.

Мы уже говорили о ветродвигателях карусельного и барабанного типа. Известен еще так называемый роторный ветродвигатель (рис. 23). Его лопасти вращаются, как у карусельного ветродвигателя, в горизонтальной плоскости и приводят в движение вертикальный вал.

Рис. 23. Ветродвигатель роторного типа

Широко распространены в настоящее время крыльчатые ветродвигатели, самым древним типом которых и являются обычные ветряные мельницы. Основной частью любого крыльчатого ветродвигателя является ветровое колесо. Оно состоит из нескольких лопастей и вращается под действием ветра. При помощи пары конических шестерен, смонтированных на головке ветродвигателя (рис. 24), вращение колеса превращается в более быстрое движение вертикального вала или в возвратно-поступательное перемещение приводной штанги.

Рис. 24. Схема крыльчатого ветродвигателя

Для поворота головки и ветрового колеса на ветер у ветряных мельниц имеется водило, а у современных небольших ветродвигателей - хвост с вертикальным оперением на конце. У крупных крыльчатых ветродвигателей существуют и другие более сложные механизмы для автоматического установа ветрового колеса на ветер. Чтобы скорость вращения ветроколеса не превышала предельной, имеется специальное устройство для автоматического регулирования числа оборотов.

Обычно у поверхности земли воздушный поток вследствие различных препятствий бывает неравномерным, ослабленным, поэтому ветровое колесо устанавливают на высокой мачте или башне, выше препятствий.

По устройству ветровых колес современные крыльчатые ветродвигатели делятся на быстроходные и тихоходные.

У тихоходного ветродвигателя ветровое колесо состоит из большого числа лопастей (рис. 25). Оно легко трогается с места. Благодаря этому тихоходный ветродвигатель удобен для работы с поршневым насосом и другими машинами, требующими при пуске в работу большое начальное усилие.

Рис. 25. Современный многолопастный ветродвигатель TB-5 мощностью до 2,5 лошадиной силы

Тихоходные ветродвигатели в основном используются в районах, где скорость ветра в среднем не превышает 4,5 метра в одну секунду. Все механизмы многопластных ветродвигателей, как правило, несколько проще, чем у быстроходных. Однако ветровые колеса тихоходных ветродвигателей представляют собой довольно громоздкие конструкции. При больших размерах таких колес трудно создать необходимую устойчивость, особенно при высоких скоростях ветра. Поэтому в настоящее время многолопастные ветродвигатели строятся с диаметрами ветровых колес не более 8 метров. Мощность такого ветродвигателя достигает 6 лошадиных сил. Этой мощности вполне достаточно для того, чтобы подавать на поверхность воду из скважин глубиной до 200 метров.

Быстроходные ветродвигатели имеют в ветровом колесе не более четырех крыльев с обтекаемым профилем (см., например, рис. 27).

Рис. 27. Ветродвигатель 1-Д-18 мощностью до 30 киловатт

Это дает возможность им хорошо выдерживать очень сильные ветры. Даже при сильном и порывистом ветре хорошо устроенные механизмы регулирования создают равномерное вращение ветровых колес быстроходных ветродвигателей.

Эти положительные особенности быстроходных ветродвигателей позволяют им работать при переменном ветре любой силы.

Поэтому быстроходные ветродвигатели могут строиться с очень большими диаметрами ветровых колес, достигающими пятидесяти и более метров и развивающими мощность несколько сот лошадиных сил.

Благодаря высокой и устойчивой равномерности у ветровых колес быстроходные ветродвигатели используются для привода самых разнообразных машин и электрических генераторов. Современные быстроходные ветродвигатели являются универсальными машинами.

Сравнение ветродвигателей различных систем удобно производить, вводя понятие о нормальной быстроходности. Эта быстроходность определяется отношением окружной скорости на внешнем конце вращающейся лопасти при скорости ветра 8 метров в секунду к скорости воздушного потока.

Лопасти карусельных, роторных и барабанных ветродвигателей при работе перемещаются вдоль воздушного потока и скорость любой их точки никогда не может быть больше скорости ветра. Поэтому нормальная быстроходность ветродвигателей этих типов будет всегда меньше единицы (так как числитель будет меньше знаменателя).

Ветровые колеса крыльчатых ветродвигателей вращаются поперек направления ветра, а поэтому скорость движения концевых частей у их крыльев достигает больших величин. Она может быть в несколько раз больше скорости воздушного потока. Чем меньше лопастей и лучше их профиль, тем меньшее сопротивление испытывает ветровое колесо. Значит, тем быстрее оно вращается. Лучшие образцы современных крыльчатых ветродвигателей имеют нормальную быстроходность, достигающую девяти единиц. Большинство ветродвигателей заводского производства имеет быстроходность, равную 5-7 единицам. Для сравнения отметим, что даже лучшие крестьянские мельницы имели быстроходность, равную всего 2-3 единицам (и в этом смысле они являются более совершенными, чем карусельные, роторные и барабанные ветродвигатели).

С ростом числа лопастей у ветрового колеса увеличивается его способность трогаться с места при небольших скоростях ветра. Поэтому многолопастные крыльчатые ветродвигатели, у которых суммарная площадь лопастей составляет 60-70 процентов от ометаемой поверхности (см. рис. 20) ветрового колеса, вступают в работу при скоростях ветра 3-3,5 метра в секунду.

Рис. 20. Мельница козлового типа

Быстроходные же ветродвигатели с малым числом лопастей трогаются с места при скоростях ветра от 4,5 до 6 метров в секунду. Поэтому их приходится пускать в работу или без нагрузки или при помощи специальных устройств.

Хорошее трогание с места и простота конструкции карусельных, роторных и барабанных ветродвигателей подкупают многих изобретателей и конструкторов, которые считают их идеальными ветродвигателями. В действительности, однако, эти машины имеют ряд существенных недостатков. Эти недостатки затрудняют их использование даже с такими распространенными и простыми машинами, как поршневые насосы и жерновые мукомольные установки.

Ветродвигатели с приемниками энергии ветра роторного типа очень плохо используют энергию воздушного потока, коэффициент использования энергии ветра у них в 2-2,5 раза меньше, чем у крыльчатых ветродвигателей. Поэтому при равных ометаемых лопастями поверхностях крыльчатые ветродвигатели могут развить мощность в 2- 2,5 раза большую, чем карусельные, роторные и барабанные ветросиловые установки.

Ветродвигатели роторного типа в настоящее время используются лишь в виде небольших кустарных установок мощностью до 0,5 лошадиной силы. Например, они находят применение для привода в движение различных вентиляционных устройств в помещениях для скота, кузницах и других производственных помещениях в сельском хозяйстве.

От чего зависит мощность ветродвигателя?

Мы знаем, что энергия воздушного потока непостоянна, поэтому любой ветряной двигатель имеет переменную мощность. Мощность любого ветродвигателя зависит от скорости ветра. Установлено, что при увеличении скорости ветра в два раза мощность на крыльях ветродвигателя увеличивается в 8 раз, а при росте скорости воздушного потока в 3 раза мощность ветродвигателя увеличивается в 27 раз.

Мощность ветродвигателя зависит также и от величины приемника энергии ветра. В этом случае она пропорциональна той площади, которую ометают лопасти ветрового колеса или ротора. Например, у крыльчатых ветродвигателей ометаемая лопастями поверхность будет площадью круга, который описывает конец лопасти за один полный оборот. У барабанных, карусельных и роторных ветродвигателей ометаемая лопастями поверхность представляет площадь прямоугольника с высотой, равной длине лопасти, и с шириной, равной расстоянию между наружными кромками противоположных лопастей.

Однако любое ветровое колесо или ротор превращает в полезную механическую работу лишь часть энергии воздушного потока, проходящего через ометаемую лопастями поверхность. Эта часть энергии определяется коэффициентом использования энергии ветра. Величина коэффициента использования энергии ветра всегда меньше единицы. У лучших современных быстроходных ветродвигателей этот коэффициент достигает 0,42. У серийных заводских быстроходных и тихоходных ветродвигателей коэффициент использования энергии ветра обычно равен 0,30-0,35; это значит, что примерно лишь одна треть энергии воздушного потока, проходящего через ветровые колеса ветродвигателей, превращается в полезную работу. Остальные две трети энергии остаются не использованными.

Советский ученый Г. X. Сабинин на основании расчетов установил, что даже у идеального ветряка коэффициент использования энергии ветра равен только 0,687.

Почему же этот коэффициент не может быть равным или даже близким к единице?

Объясняется это тем, что часть энергии ветра затрачивается на образование вихрей у лопастей и скорость ветра за ветроколесом падает.

Таким образом, фактическая величина мощности ветродвигателя зависит от коэффициента использования энергии ветра. Мощность ветродвигателя пропорциональна его значению. Это значит, что с увеличением коэффициента использования энергии ветра увеличивается мощность ветродвигателя, и наоборот.

Барабанные, карусельные и роторные ветродвигатели с простейшими лопастями имеют очень низкие коэффициенты использования энергии ветра. Их значения колеблются в широких пределах от 0,06 до 0,18. У крыльчатых же двигателей этот коэффициент находится в пределах от 0,30 до 0,42.

Кроме этого, полезная мощность любого ветродвигателя пропорциональна еще коэффициенту полезного действия механизма передачи, а также плотности воздуха. Обычно коэффициент полезного действия механизмов современных ветродвигателей равен от 0,8 до 0,9.

Из сказанного о мощности ветродвигателя следует, что при данном ветре тот ветродвигатель будет иметь более высокую мощность, у которого через поверхность, ометаемую крыльями, протекает наибольшее количество воздушного потока, а лопасти ветроколеса имеют хорошо обтекаемый профиль.

Принцип действия всех ветродвигателей один: под напором ветра вращается ветроколесо с лопастями, передавая крутящий момент через систему передач валу генератора, вырабатывающего электроэнергию, водяному насосу. Чем больше диаметр ветроколеса, тем больший воз-душный поток оно захватывает и тем больше энергии вырабатывает аг-регат.

Традиционная компоновка ветряков – с горизонтальной осью вращения (рис.3 ) – неплохое решение для агрегатов малых размеров и мощностей. Когда же размахи лопастей выросли, такая компоновка оказалась неэффективной, так как на разной высоте ветер дует в разные стороны. В этом случае не только не удается оптимально ориентировать агрегат по ветру, но и возникает опасность разрушения лопастей. Кроме того, концы лопастей крупной установки, двигаясь с большой скоростью, создают шум. Однако главное препятствие на пути использования энергии ветра всеже экономическая – мощность агрегата остается небольшой и доля затрат на его эксплуатацию оказывается значительной. Маломощные агрегаты могут вырабатывать энергию примерно втрое более дорогую.

Рисунок 3 - Крыльчатый ветродвигатель

Существующие системы ветродвигателей по схеме устройства ветроколеса и его положению в потоке ветра разделяются на три класса.

Первый класс включает ветродвигатели, у которых ветровое колесо располагается в вертикальной плоскости; при этом плоскость вращения перпендикулярна направлению ветра, и, следовательно, ось ветроколеса параллельна потоку. Такие ветродвигатели называются крыльчатыми.

Быстроходностью называется отношение окружной скорости (ωR) конца лопасти к скорости ветра V:

V
Z = ωR .

Крыльчатые ветродвигатели, согласно ГОСТ 2656-44, в зависимости от типа ветроколеса и быстроходности разделяются на три группы (рисунок 4):

Ø ветродвигатели многолопастные, тихоходные, с быстроходностью Zn £2;

Ø ветродвигатели малолопастные, тихоходные, в том числе ветряные мельницы, с быстроходностью Zn > 2;

Ø ветродвигатели малолопастные, быстроходные, Zn ³3.

Рисунок.4 - Схемы ветроколес крыльчатых ветродвигателей: 1 – многолопастных; 2–4 – малолопастных

Ко второму классу относятся системы ветродвигателей с вертикальной осью вращения ветрового колеса . По конструктивной схеме они разбиваются на группы:

- карусельные , у которых нерабочие лопасти либо прикрываются ширмой, либо располагаются ребром против ветра (рисунок 5 поз. 1);

- роторные ветродвигатели системы Савониуса.

К третьему классу относятся ветродвигатели, работающие по принципу водяного мельничного колеса и называемыебарабанными (рисунок 5, поз.7) . У этих ветродвигателей ось вращения горизонтальна и перпендикулярна направлению ветра.

Рисунок 5 - Типы ветродвигателей: 1 – карусельный; 2–3 многолопастные; 4–5 – малолопастные; 6 – ортогональный; 7 - барабанный

Основные недостатки карусельных и барабанных ветродвигателей вытекают из самого принципа расположения рабочих поверхностей ветроколеса в потоке ветра:

1. Так как рабочие лопасти колеса перемещаются в направлении воздушного потока, ветровая нагрузка действует не одновременно на все лопасти, а поочерёдно. В результате каждая лопасть испытывает прерывную нагрузку, коэффициент использования энергии ветра получается весьма низким и не превышает 10 %,.

2. Движение поверхностей ветроколеса в направлении ветра не позволяет развить большие обороты, так как поверхности не могут двигаться быстрее ветра.

3. Размеры используемой части воздушного потока (ометаемая поверхность) малы по сравнению с размерами самого колеса, что значительно увеличивает его вес, отнесённый к единице установленной мощности ветродвигателя.

Карусельные ветродвигатели обладают тем преимуществом, что могут работать при любом направлении ветра не изменяя своего положения.

У роторных ветродвигателей системы Савониуса наибольший коэффициент использования энергии ветра 18 %.

Крыльчатые ветродвигатели свободны от перечисленных выше недостатков карусельных и барабанных ветродвигателей. Хорошие аэродинамические качества крыльчатых ветродвигателей, конструктивная возможность изготовлять их на большую мощность, относительно лёгкий вес на единицу мощности – основные преимущества ветродвигате-лей этого класса

Коммерческое применение крыльчатых ветродвигателей началось с 1980 года. За последние 14 лет мощность ветродвигателей увеличи-лась в 100 раз: от 20…60 кВт при диаметре ротора около 20 м в начале 1980 годов до 5000 кВт при диаметре ротора свыше 100 м к 2003 году (рис. 7.6).

Типы крыльчатых ветродвигателей отличаются только количеством лопастей.

Для крыльчатых ветродвигателей , наибольшая эффективность которых достигается при действии потока воздуха перпендикулярно к плоскости вращения лопастей крыльев, требуется устройство автоматического поворота оси вращения. С этой целью применяют крыло-стабилизатор.

Коэффициент использования энергии ветра (рисунок.4) у крыльчатых ветродвигателей намного выше, чем у карусельных. В то же время, у карусельных – намного больше момент вращения. Он максимален для карусельных лопастных агрегатов при нулевой относительной скорости ветра.

Распространение крыльчатых ветроагрегатов объясняется величиной скорости их вращения. Они могут непосредственно соединяться с генератором электрического тока без мультипликатора. Скорость вращения крыльчатых ветродвигателей обратно пропорциональна количеству крыльев, поэтому агрегаты с количеством лопастей больше трех практически не используются.

Различие в аэродинамике дает карусельным установкам преиму-щество в сравнении с традиционными ветряками (рисунок 7). При увеличении ско-рости ветра они быстро наращивают силу тяги, после чего скорость вращения стабилизируется. Карусельные ветродвигатели тихоходны и это позволяет использовать простые электрические схемы, например, с асинхронным генератором, без риска потерпеть аварию при случайном порыве ветра. Тихоходность выдвигает одно ограничивающее требова-ние – использование многополюсного генератора работающего на ма-лых оборотах. Такие генераторы не имеют широкого распространения, а использование мультипликаторов (Мультипликатор [лат. multiplicator умножающий] – повышающий редуктор) не эффективно из-за низкого КПД последних.

Еще более важным преимуществом карусельной конструкции ста-ла ее способность без дополнительных ухищрений следить за тем «от-куда дует ветер», что весьма существенно для приземных рыскающих потоков. Ветродвигатели подобного типа строятся в США, Японии, Англии, ФРГ, Канаде.

Карусельный лопастный ветродвигатель наиболее прост в экс-плуатации. Его конструкция обеспечивает максимальный момент при запуске ветродвигателя и автоматическое саморегулирование макси-мальной скорости вращения в процессе работы. С увеличением нагруз-ки уменьшается скорость вращения и возрастает вращающий момент вплоть до полной остановки.

При взаимодействии потока с лопастью возникают:

1) сила сопротивления, параллельная вектору относительной ско-рости набегающего потока;

2) подъемная сила, перпендикулярная силе сопротивления;

3) завихрение обтекающего лопасти потока;

4) турбулизация потока, т. е. хаотические возмущения его скоро-сти по величине и направлению;

5) препятствие для набегающего потока.

Препятствие для набегающего потока характеризуется парамет-ром, называемым геометрическим заполнением и равным отношению площади проекции лопастей на плоскость, перпендикулярную потоку, к ометаемой ими площади.

Основные классифицирующие признаки ветроэнергетических ус-тановок можно определить по следующим критериям:

1. Если ось вращения ветроколеса параллельна воздушному пото-ку, установка будет горизонтально-осевой, если ось вращения ветроко-леса перпендикулярна воздушному потоку – вертикально-осевой.

2. Установки, использующие в качестве вращающей силы силу сопротивления (драг-машины), как правило вращаются с линейной скоростью, меньшей скорости ветра, а установки, использующие подъем-ную силу (лифт-машины), имеют линейную скорость концов лопастей, существенно большую скорости ветра.

3. Для большинства установок геометрическое заполнение ветро-колеса определяется числом лопастей. ВЭУ с большим геометрическим заполнением ветроколеса развивают значительную мощность при относительно слабом ветре, и максимум мощности достигается при неболь-ших оборотах колеса. ВЭУ с малым заполнением достигают максимальной мощности при больших оборотах и дольше выходят на этот режим. Поэтому первые установки используются, например, в качестве водяных насосов и даже при слабом ветре сохраняют работоспособ-ность, вторые – в качестве электрогенераторов, где требуется высокая частота вращения.

4. Установки для непосредственного выполнения механической работы часто называют ветряной мельницей или турбиной, установки для производства электроэнергии, т. е. совокупность турбины и элек-трогенератора, называют ветроэлектрогенераторами, аэрогенераторами, а также установками с преобразованием энергии.

5. У аэрогенераторов, подключенных напрямую к мощной энерго-системе, частота вращения постоянна вследствие эффекта ассинхрони-зации, но такие установки менее эффективно используют энергию вет-ра, чем установки с переменной частотой вращения.

6. Ветроколесо может быть соединено с электрогенератором на-прямую (жесткое сопряжение) или через промежуточный преобразова-тель энергии, выполняющий роль буфера. Наличие буфера уменьшает последствия флуктуации частоты вращения ветроколеса, позволяет бо-лее эффективно использовать энергию ветра и мощность электрогенера-тора. Кроме того, существуют частично развязанные схемы соединения колеса с генератором, называемые мягкосопряженными. Таким образом, нежесткое соединение, наряду с инерцией ветроколеса, уменьшает влияние флуктуаций скорости ветра на выходные параметры электроге-нератора. Уменьшить это влияние позволяет также упругое соединение лопастей с осью ветроколеса, например, с помощью подпружинных шарниров.

Ветроколесо с горизонтальной осью. Рассмотрим горизонталь-но-осевые ветроколеса пропеллерного типа. Основной вращающей си-лой у колес этого типа является подъемная сила. Относительно ветра ветроколесо в рабочем положении может располагаться перед опорной башней или за ней.

В ветроэлектрогенераторах обычно используются двух- и трехло-пастные ветроколеса, последние отличаются очень плавным ходом. Электрогенератор и редуктор, соединяющий его с ветроколесом, распо-ложены обычно на верху опорной башни в поворотной головке.

Многолопастные колеса, развивающие большой крутящий момент при слабом ветре, используются для перекачки воды и других целей, не требующих высокой частоты вращения ветрового колеса.

Ветроэлектрогенераторы с вертикальной осью (рисунок 7) . Ветроэлекторо-генераторы с вертикальной осью вращения вследствие своей геометрии при любом направлении ветра находятся в рабочем положении. Кроме того, такая схема позволяет за счет только удлинения вала установить редуктор с генераторами внизу башни.

Принципиальными недостатками таких установок являются: го-раздо большая подверженность их усталостным разрушениям из-за бо-лее часто возникающих в них автоколебательных процессов и пульса-ция крутящего момента, приводящая к нежелательным пульсациям вы-ходных параметров генератора. Из-за этого подавляющее большинство ветроэлектрогенераторов выполнено по горизонтально-осевой схеме, однако исследования различных типов вертикально-осевых установок продолжаются.

Наиболее распространенные типы вертикально-осевых установок следующие:

1.Чашечныйротор(анемометр). Ветроколесо этого типа вра-щается силой сопротивления. Форма чашеобразной лопасти обеспечи-вает практически линейную зависимость частоты вращения колеса от скорости ветра.

2.РоторСавониуса. Это колесо также вращается силой сопро-тивления. Его лопасти выполнены из тонких изогнутых листов прямо-угольной формы, т. е. отличаются простотой и дешевизной. Вращаю-щий момент создается благодаря различному сопротивлению, оказываемому воздушному потоку вогнутой и выгнутой относительно него лопастями ротора. Из-за большого геометрического заполнения это вет-роколесо обладаем большим крутящим моментом и используется для перекачки воды.

3.РоторДарье. Вращающий момент создается подъемной силой, возникающей на двух или на трех тонких изогнутых несущих поверхно-стях, имеющих аэродинамический профиль. Подъемная сила макси-мальна в тот момент, когда лопасть с большой скоростью пересекает набегающий воздушный поток. Ротор Дарье используется в ветроэлек-трогенераторах. Раскручиваться самостоятельно ротор, как правило, не может, поэтому для его запуска обычно используется генератор, рабо-тающий в режиме двигателя.

4.РоторМасгрува. Лопасти этого ветроколеса в рабочем состоя-нии расположены вертикально, но имеют возможность вращаться или складываться вокруг горизонтальной оси при отключении. Существуют различные варианты роторов Масгрува, но все они отключаются при сильном ветре.

5.РоторЭванса. Лопасти этого ротора в аварийной ситуации и при управлении поворачиваются вокруг вертикальной оси.

Рисунок 7 - Ветроэлектрогенераторы с вертикальной осью

Концентраторы. Мощность ветроэнергоустановки зависит от эффективности использования энергии воздушного потока. Одним из способов ее повышения является использование специальных концен-траторов (усилителей) воздушного потока. Для горизонтально-осевых ветроэлектрогенераторов разработаны различные варианты таких кон-центраторов. Это могут быть диффузоры или конфузоры (дефлекторы), направляющие на ветроколесо воздушный поток с площади, большей ометаемой площади ротора, и некоторые другие устройства. Широкого распространения в промышленных установках концентраторы пока не получили.


Россия в отношении ветроэнергетических ресурсов занимает двоякое положение. С одной стороны, благодаря огромной общей площади и обилию равнинных местностей ветра в целом много, и он большей частью ровный. С другой – наши ветры преимущественно низкопотенциальные, медленные, см. рис. С третьей, в мало обжитых местностях ветры буйные. Исходя из этого, задача завести на хозяйстве ветрогенератор вполне актуальна. Но, чтобы решить – покупать достаточно дорогое устройство, или сделать его своими руками, нужно как следует подумать, какой тип (а их очень много) для какой цели выбрать.

Основные понятия

  1. КИЭВ – коэффициент использования энергии ветра. В случае применения для расчета механистической модели плоского ветра (см. далее) он равен КПД ротора ветросиловой установки (ВСУ).
  2. КПД – сквозной КПД ВСУ, от набегающего ветра до клемм электрогенератора, или до количества накачанной в бак воды.
  3. Минимальная рабочая скорость ветра (МРС) – скорость его, при которой ветряк начинает давать ток в нагрузку.
  4. Максимально допустимая скорость ветра (МДС) – его скорость, при которой выработка энергии прекращается: автоматика или отключает генератор, или ставит ротор во флюгер, или складывает его и прячет, или ротор сам останавливается, или ВСУ просто разрушается.
  5. Стартовая скорость ветра (ССВ) – при такой его скорости ротор способен провернуться без нагрузки, раскрутиться и войти в рабочий режим, после чего можно включать генератор.
  6. Отрицательная стартовая скорость (ОСС) – это значит, что ВСУ (или ВЭУ – ветроэнергетическая установка, или ВЭА, ветроэнергетический агрегат) для запуска при любой скорости ветра требует обязательной раскрутки от постороннего источника энергии.
  7. Стартовый (начальный) момент – способность ротора, принудительно заторможенного в потоке воздуха, создавать вращающий момент на валу.
  8. Ветродвигатель (ВД) – часть ВСУ от ротора до вала генератора или насоса, или другого потребителя энергии.
  9. Роторный ветрогенератор – ВСУ, в которой энергия ветра преобразуется во вращательный момент на валу отбора мощности посредством вращения ротора в потоке воздуха.
  10. Диапазон рабочих скоростей ротора – разность между МДС и МРС при работе на номинальную нагрузку.
  11. Тихоходный ветряк – в нем линейная скорость частей ротора в потоке существенно не превосходит скорость ветра или ниже ее. Динамический напор потока непосредственно преобразуется в тягу лопасти.
  12. Быстроходный ветряк – линейная скорость лопастей существенно (до 20 и более раз) выше скорости ветра, и ротор образует свою собственную циркуляцию воздуха. Цикл преобразования энергии потока в тягу сложный.

Примечания:

  1. Тихоходные ВСУ, как правило, имеют КИЭВ ниже, чем быстроходные, но имеют стартовый момент, достаточный для раскрутки генератора без отключения нагрузки и нулевую ССВ, т.е. абсолютно самозапускающиеся и применимы при самых слабых ветрах.
  2. Тихоходность и быстроходность – понятия относительные. Бытовой ветряк на 300 об/мин может быть тихоходным, а мощные ВСУ типа EuroWind, из которых набирают поля ветроэлектростанций, ВЭС (см. рис.) и роторы которых делают порядка 10 об/мин – быстроходные, т.к. при таком их диаметре линейная скорость лопастей и их аэродинамика на большей части размаха – вполне «самолетные», см. далее.

Какой нужен генератор?

Электрический генератор для ветряка бытового назначения должен вырабатывать электроэнергию в широком диапазоне скоростей вращения и обладать способностью самозапуска без автоматики и внешних источников питания. В случае использования ВСУ с ОСС (ветряки с раскруткой), обладающих, как правило, высокими КИЭВ и КПД, он должен быть и обратимым, т.е. уметь работать и как двигатель. При мощностях до 5 кВт этому условию удовлетворяют электрические машины с постоянными магнитами на основе ниобия (супермагнитами); на стальных или ферритовых магнитах можно рассчитывать не более чем на 0,5-0,7 кВт.

Примечание: асинхронные генераторы переменного тока или коллекторные с ненамагниченным статором не годятся совершенно. При уменьшении силы ветра они «погаснут» задолго до того, как его скорость упадет до МРС, и потом сами не запустятся.

Отличное «сердце» ВСУ мощностью от 0,3 до 1-2 кВт получается из автогенератора переменного тока со встроенным выпрямителем; таких сейчас большинство. Во-первых, они держат выходное напряжение 11,6-14,7 В в довольно широком диапазоне скоростей без внешних электронных стабилизаторов. Во-вторых, кремниевые вентили открываются, когда напряжение на обмотке достигнет примерно 1,4 В, а до этого генератор «не видит» нагрузки. Для этого генератор нужно уже довольно прилично раскрутить.

В большинстве случаев автогенератор можно непосредственно, без зубчатой или ременной передачи, соединить с валом быстроходного ВД, подобрав обороты выбором количества лопастей, см. ниже. «Быстроходки» имеют малый или нулевой стартовый момент, но ротор и без отключения нагрузки успеет достаточно раскрутиться, прежде чем вентили откроются и генератор даст ток.

Выбор по ветру

Прежде чем решать, какой сделать ветрогенератор, определимся с местной аэрологией. В серо-зеленоватых (безветренных) областях ветровой карты хоть какой-то толк будет лишь от парусного ветродвигателя (и них далее поговорим). Если необходимо постоянное энергоснабжение, то придется добавить бустер (выпрямитель со стабилизатором напряжения), зарядное устройство, мощную аккумуляторную батарею, инвертор 12/24/36/48 В постоянки в 220/380 В 50 Гц переменного тока. Обойдется такое хозяйство никак не менее $20.000, и снять долговременную мощность более 3-4 кВт вряд ли получится. В общем, при непреклонном стремлении к альтернативной энергетике лучше поискать другой ее источник.

В желто-зеленых , слабоветренных местах, при потребности в электричестве до 2-3 кВт самому можно взяться за тихоходный вертикальный ветрогенератор . Их разработано несть числа, и есть конструкции, по КИЭВ и КПД почти не уступающие «лопастникам» промышленного изготовления.

Если же ВЭУ для дома предполагается купить, то лучше ориентироваться на ветряк с парусным ротором. Споров и них много, и в теории пока еще не все ясно, но работают. В РФ «парусники» выпускают в Таганроге на мощность 1-100 кВт.

В красных , ветреных, регионах выбор зависит от потребной мощности. В диапазоне 0,5-1,5 кВт оправданы самодельные «вертикалки»; 1,5-5 кВт – покупные «парусники». «Вертикалка» тоже может быть покупной, но обойдется дороже ВСУ горизонтальной схемы. И, наконец, если требуется ветряк мощностью 5 кВт и более, то выбирать нужно между горизонтальными покупными «лопастниками» или «парусниками».

Примечание: многие производители, особенно второго эшелона, предлагают комплекты деталей, из которых можно собрать ветрогенератор мощностью до 10 кВт самостоятельно. Обойдется такой набор на 20-50% дешевле готового с установкой. Но прежде покупки нужно внимательно изучить аэрологию предполагаемого места установки, а затем по спецификациям подобрать подходящие тип и модель.

О безопасности

Детали ветродвигателя бытового назначения в работе могут иметь линейную скорость, превосходящую 120 и даже 150 м/с, а кусочек любого твердого материала весом в 20 г, летящий со скоростью 100 м/с, при «удачном» попадании убивает здорового мужика наповал. Стальная, или из жесткого пластика, пластина толщиной 2 мм, движущаяся со скоростью 20 м/с, рассекает его же напополам.

Кроме того, большинство ветряков мощностью более 100 Вт довольно сильно шумят. Многие порождают колебания давления воздуха сверхнизкой (менее 16 Гц) частоты – инфразвуки. Инфразвуки неслышимы, но губительны для здоровья, а распространяются очень далеко.

Примечание: в конце 80-х в США был скандал – пришлось закрыть крупнейшую на тот момент в стране ВЭС. Индейцы из резервации в 200 км от поля ее ВСУ доказали в суде, что резко участившиеся у них после ввода ВЭС в эксплуатацию расстройства здоровья обусловлены ее инфразвуками.

В силу указанных выше причин установка ВСУ допускается на расстоянии не менее 5 их высот от ближайших жилых строений. Во дворах частных домовладений можно устанавливать ветряки промышленного изготовления, соответствующим образом сертифицированные. На крышах ставить ВСУ вообще нельзя – при их работе, даже у маломощных, возникают знакопеременные механические нагрузки, способные вызвать резонанс строительной конструкции и ее разрушение.

Примечание: высотой ВСУ считается наивысшая точка ометаемого диска (для лопастных роторов) или геомерической фигуры (для вертикальных ВСУ с ротором на древке). Если мачта ВСУ или ось ротора выступают вверх еще выше, высота считается по их топу – верхушке.

Ветер, аэродинамика, КИЭВ

Самодельный ветрогенератор подчиняется тем же законам природы, что и заводской, рассчитанный на компьютере. И самодельщику основы его работы нужно понимать очень хорошо – в его распоряжении чаще всего нет дорогих суперсовременных материалов и технологического оборудования. Аэродинамика же ВСУ ох как непроста…

Ветер и КИЭВ

Для расчета серийных заводских ВСУ используется т. наз. плоская механистическая модель ветра. В ее основе следующие предположения:

  • Скорость и направление ветра постоянны в пределах эффективной поверхности ротора.
  • Воздух – сплошная среда.
  • Эффективная поверхность ротора равна ометаемой площади.
  • Энергия воздушного потока – чисто кинетическая.

При таких условиях максимальную энергию единицы объема воздуха вычисляют по школьной формуле, полагая плотность воздуха при нормальных условиях 1,29 кг*куб. м. При скорости ветра 10 м/с один куб воздуха несет в себе 65 Дж, и с одного квадрата эффективной поверхности ротора можно, при 100% КПД всей ВСУ, снять 650 Вт. Это весьма упрощенный подход – все знают, что ветер идеально ровным не бывает. Но на это приходится идти, чтобы обеспечить повторяемость изделий – обычное в технике дело.

Плоскую модель игнорировать не следует, она дает четкий минимум доступной энергии ветра. Но воздух, во-первых, сжимаем, во-вторых, очень текуч (динамическая вязкость всего 17,2 мкПа*с). Это значит, поток может обтекать ометаемую площадь, уменьшая эффективную поверхность и КИЭВ, что чаще всего и наблюдается. Но в принципе возможна и обратная ситуация: ветер стекается к ротору и площадь эффективной поверхности тогда окажется больше ометаемой, а КИЭВ – больше 1 относительно его же для плоского ветра.

Приведем два примера. Первый – прогулочная, довольно тяжеловесная, яхта может идти не только против ветра, но и быстрее его. Ветер имеется в виду внешний; вымпельный ветер все равно должен быть быстрее, иначе как он судно потянет?

Второй – классика авиационной истории. На испытаниях МИГ-19 оказалось, что перехватчик, который был на тонну тяжелее фронтового истребителя, по скорости разгоняется быстрее. С теми же движками в том же планере.

Теоретики не знали, что и думать, и всерьез засомневались в законе сохранения энергии. В конце концов оказалось – дело в выступающем из воздухозаборника конусе обтекателя РЛС. От его носка к обечайке возникало уплотнение воздуха, как бы сгребавшее его со сторон к компрессорам двигателей. С тех пор ударные волны прочно вошли в теорию как полезные, и фантастические летные данные современных самолетов в немалой степени обусловлены их умелым использованием.

Аэродинамика

Развитие аэродинамики принято делить на две эпохи – до Н. Г. Жуковского и после. Его доклад «О присоединенных вихрях» от 15 ноября 1905 г. стал началом новой эры в авиации.

До Жуковского летали на поставленных плашмя парусах: полагалось, что частицы набегающего потока отдают весь свой импульс передней кромке крыла. Это позволяло сразу избавиться от векторной величины – момента количества движения – порождавшей зубодробительную и чаще всего неаналитическую математику, перейти к куда более удобным скалярным чисто энергетическим соотношениям, и получить в итоге расчетное поле давления на несущую плоскость, более-менее похожее на настоящее.

Такой механистический подход позволил создать аппараты, способные худо-бедно подняться в воздух и совершить перелет из одного места в другое, не обязательно грохнувшись на землю где-то по пути. Но стремление увеличить скорость, грузоподъемность и другие летные качества все больше выявляло несовершенство первоначальной аэродинамической теории.

Идея Жуковского была такова: вдоль верхней и нижней поверхностей крыла воздух проходит разный путь. Из условия непрерывности среды (пузыри вакуума сами по себе в воздухе не образуются) следует, что скорости верхнего и нижнего потоков, сходящих с задней кромки, должны отличаться. Вследствие пусть малой, но конечной вязкости воздуха там из-за разности скоростей должен образоваться вихрь.

Вихрь вращается, а закон сохранения количества движения, столь же непреложный, как и закон сохранения энергии, справедлив и для векторных величин, т.е. должен учитывать и направление движения. Поэтому тут же, на задней кромке, должен сформироваться противоположно вращающийся вихрь с таким же вращательным моментом. За счет чего? За счет энергии, вырабатываемой двигателем.

Для практики авиации это означало революцию: выбрав соответствующий профиль крыла, можно было присоединенный вихрь пустить вокруг крыла в виде циркуляции Г, увеличивающей его подъемную силу. Т.е., затратив часть, а для больших скоростей и нагрузок на крыло – большую часть, мощности мотора, можно создать вокруг аппарата воздушный поток, позволяющий добиться лучших летных качеств.

Это делало авиацию авиацией, а не частью воздухоплавания: теперь летательный аппарат мог сам создавать себе нужную для полета среду и не быть более игрушкой воздушных потоков. Нужен только двигатель помощнее, и еще и еще мощнее…

Снова КИЭВ

Но у ветряка мотора нет. Он, наоборот, должен отбирать энергию у ветра и давать ее потребителям. И здесь выходит – ноги вытащил, хвост увяз. Пустили слишком мало энергии ветра на собственную циркуляцию ротора – она будет слабой, тяга лопастей – малой, а КИЭВ и мощность – низкими. Отдадим на циркуляцию много – ротор при слабом ветре будет на холостом ходу крутиться как бешеный, но потребителям опять достается мало: чуть дали нагрузку, ротор затормозился, ветер сдул циркуляцию, и ротор стал.

Закон сохранения энергии «золотую середину» дает как раз посерединке: 50% энергии даем в нагрузку, а на остальные 50% подкручиваем поток до оптимума. Практика подтверждает предположения: если КПД хорошего тянущего пропеллера составляет 75-80%, то КИЭВ так же тщательно рассчитанного и продутого в аэродинамической трубе лопастного ротора доходит до 38-40%, т.е. до половины от того, чего можно добиться при избытке энергии.

Современность

Ныне аэродинамика, вооруженная современной математикой и компьютерами, все более уходит от неизбежно что-то да упрощающих моделей к точному описанию поведения реального тела в реальном потоке. И тут, кроме генеральной линии – мощность, мощность, и еще раз мощность! – обнаруживаются пути побочные, но многообещающие как раз при ограниченном количестве поступающей в систему энергии.

Известный авиатор-альтернативщик Пол Маккриди еще в 80-х создал самолет, с двумя моторчиками от бензопилы мощностью в 16 л.с. показавший 360 км/ч. Причем шасси его было трехопорным неубирающимся, а колеса – без обтекателей. Ни один из аппаратов Маккриди не вышел на линию и не встал на боевое дежурство, но два – один с поршневыми моторами и пропеллерами, а другой реактивный – впервые в истории облетели вокруг земного шара без посадки на одной заправке.

Парусов, породивших изначальное крыло, развитие теории тоже коснулось весьма существенно. «Живая» аэродинамика позволила яхтам при ветре в 8 узл. встать на подводные крылья (см. рис.); чтобы разогнать такую громадину до нужной скорости гребным винтом, требуется двигатель не менее 100 л.с. Гоночные катамараны при таком же ветре ходят со скоростью около 30 узл. (55 км/ч).

Есть и находки совершенно нетривиальные. Любители самого редкого и экстемального спорта – бейсджампинга – надев апециальный костюм-крыло, вингсьют, летают без мотора, маневрируя, на скорости более 200 км/ч (рис. справа), а затем плавно приземляются в заранее выбранном месте. В какой сказке люди летают сами по себе?

Разрешились и многие загадки природы; в частности – полет жука. По классической аэродинамике, он летать не способен. Точно так же, как и родоначальник «стелсов» F-117 с его крылом ромбовидного профиля тоже не способен подняться в воздух. А МИГ-29 и Су-27, которые некоторое время могут лететь хвостом вперед, и вовсе ни в какие представления не укладываются.

И почему тогда, занимаясь ветродвигателями, не забавой и не орудием уничтожения себе подобных, а источником жизненно важного ресурса, нужно плясать непременно от теории слабых потоков с ее моделью плоского ветра? Неужели не найдется возможности продвинуться дальше?

Чего ожидать от классики?

Однако от классики отказываться ни в коем случае не следует. Она дает основу, не оперевшись на которую нельзя подняться выше. Точно так же, как теория множеств не отменяет таблицу умножения, а от квантовой хромодинамики яблоки с деревьев вверх не улетят.

Итак, на что можно рассчитывать при классическом подходе? Посмотрим на рисунок. Слева – типы роторов; они изображены условно. 1 – вертикальный карусельный, 2 – вертикальный ортогональный (ветряная турбина); 2-5 – лопастные роторы с разным количеством лопастей с оптимизированными профилями.

Справа по горизонтальной оси отложена относительная скорость ротора, т.е., отношение линейной скорости лопасти к скорости ветра. По вертикальной вверх – КИЭВ. А вниз – опять же относительный крутящий момент. Единичным (100%) крутящим моментом считается такой, который создает насильно заторможенный в потоке ротор со 100% КИЭВ, т.е. когда вся энергия потока преобразуется во вращающее усилие.

Такой подход позволяет делать далеко идущие выводы. Скажем, количество лопастей нужно выбирать не только и не столько по желательной скорости вращения: 3- и 4-лопастники сразу много теряют по КИЭВ и вращательному моменту по сравнению с хорошо работающими примерно в том же диапазоне скорстей 2- и 6-лопастниками. А внешне похожие карусель и ортогонал обладают принципиально разными свойствами.

В целом же предпочтение следует отдавать лопастным роторам, кроме случаев, когда требуются предельная дешевизна, простота, необслуживаемый самозапуск без автоматики и невозможен подъем на мачту.

Примечание: о парусных роторах поговорим особо – они, похоже, в классику не укладываются.

Вертикалки

ВСУ с вертикальной осью вращения имеют неоспоримое для быта преимущество: их узлы, требующие обслуживания, сосредоточены внизу и не нужен подъем наверх. Там остается, и то не всегда, упорно-опорный самоустанавливающийся подшипник, но он прочен и долговечен. Поэтому, проектируя простой ветрогенератор, отбор вариантов нужно начинать с вертикалок. Основные их типы представлены на рис.

ВС

На первой позиции – самый простейший, чаще всего называемый ротором Савониуса. На самом деле его изобрели в 1924 г. в СССР Я. А. и А. А. Воронины, а финский промышленник Сигурд Савониус бессовестно присвоил себе изобретение, проигнорировав советское авторское свидетельство, и начал серийный выпуск. Но внедрение в судьбе изобретения значит очень много, поэтому мы, чтобы не ворошить прошлое и не тревожить прах усопших, назовем этот ветряк ротором Ворониных-Савониуса, или для краткости, ВС.

ВС для самодельщика всем хорош, кроме «паровозного» КИЭВ в 10-18%. Однако в СССР над ним работали много, и наработки есть. Ниже мы рассмотрим усовершенствованную конструкцию, не намного более сложную, но по КИЭВ дающую фору лопастникам.

Примечание: двухлопастный ВС не крутится, а дергается рывками; 4-лопастный лишь немного плавнее, но много теряет в КИЭВ. Для улучшения 4-«корытные» чаще всего разносят на два этажа – пара лопастей внизу, а другая пара, повернутая на 90 градусов по горизонтали, над ними. КИЭВ сохраняется, и боковые нагрузки на механику слабеют, но изгибные несколько возрастают, и при ветре более 25 м/с у такой ВСУ на древке, т.е. без растянутого вантами подшипника над ротором, «срывает башню».

Дарье

Следующий – ротор Дарье; КИЭВ – до 20%. Он еще проще: лопасти – из простой упругой ленты безо всякого профиля. Теория ротора Дарье еще недостаточно разработана. Ясно только, что начинает он раскручиваться за счет разности аэродинамического сопротивления горба и кармана ленты, а затем становится вроде как быстроходным, образуя собственную циркуляцию.

Вращательный момент мал, а в стартовых положениях ротора параллельно и перпендикулярно ветру вообще отсутствует, поэтому самораскрутка возможна только при нечетном количестве лопастей (крыльев?) В любом случае на время раскрутки нагрузку от генератора нужно отключать.

Есть у ротора Дарье еще два нехороших качества. Во-первых, при вращении вектор тяги лопасти описывает полный оборот относительно ее аэродинамического фокуса, и не плавно, а рывками. Поэтому ротор Дарье быстро разбивает свою механику даже при ровном ветре.

Во-вторых, Дарье не то что шумит, а вопит и визжит, вплоть до того, что лента рвется. Происходит это вследствие ее вибрации. И чем больше лопастей, тем сильнее рев. Так что Дарье если и делают, то двухлопастными, из дорогих высокопрочных звукопоглощающих материалов (карбона, майлара), а для раскрутки посередине мачты-древка приспосабливают небольшой ВС.

Ортогонал

На поз. 3 – ортогональный вертикальный ротор с профилированными лопастями. Ортогональный потому, что крылья торчат вертикально. Переход от ВС к ортогоналу иллюстрирует рис. слева.

Угол установки лопастей относительно касательной к окружности, касающейся аэродинамических фокусов крыльев, может быть как положительным (на рис.), так и отрицательным, сообразно силе ветра. Иногда лопасти делают поворотными и ставят на них флюгерки, автоматически держащие «альфу», но такие конструкции часто ломаются.

Центральное тело (голубое на рис.) позволяет довести КИЭВ почти до 50% В трехлопастном ортогонале оно должно в разрезе иметь форму треугольника со слегка выпуклыми сторонами и скругленными углами, а при большем количестве лопастей достаточно простого цилиндра. Но теория для ортогонала оптимальное количество лопастей дает однозначно: их должно быть ровно 3.

Ортогонал относится к быстроходным ветрякам с ОСС, т.е. обязательно требует раскрутки при вводе в эксплуатацию и после штиля. По ортогональной схеме выпускаются серийные необслуживаемые ВСУ мощностью до 20 кВт.

Геликоид

Геликоидный ротор, или ротор Горлова (поз. 4) – разновидность ортогонала, обеспечивающая равномерное вращение; ортогонал с прямыми крыльями «рвет» лишь немного слабее двухлопастного ВС. Изгиб лопастей по геликоиде позволяет избежать потерь КИЭВ из-за их кривизны. Хотя часть потока кривая лопасть и отбрасывает, не используя, но зато и загребает часть в зону наибольшей линейной скорости, компенсируя потери. Геликоиды используют реже прочих ветряков, т.к. они вследствие сложности изготовления оказываются дороже равных по качеству собратьев.

Бочка-загребушка

На 5 поз. – ротор типа ВС, окруженный направляющим аппаратом; его схема представлена на рис. справа. В промышленном исполнении встречается редко, т.к. дорогостоящий отвод земли не компенсирует прироста мощности, а материалоемкость и сложность производства велики. Но самодельщик, боящийся работы – уже не мастер, а потребитель, и, если нужно не более 0,5-1,5 кВт, то для него «бочка-загребушка» лакомый кусок:

  • Ротор такого типа абсолютно безопасен, бесшумен, не создает вибраций и может быть установлен где угодно, хоть на детской площадке.
  • Согнуть «корыта» из оцинковки и сварить каркас из труб – работа ерундовая.
  • Вращение – абсолютно равномерное, детали механики можно взять самые дешевые или из хлама.
  • Не боится ураганов – слишком сильный ветер не может протолкнуться в «бочку»; вокруг нее возникает обтекаемый вихревой кокон (мы с этим эффектом еще столкнемся).
  • А самое главное – поскольку поверхность «загребушки» в несколько раз больше таковой ротора внутри, КИЭВ может быть и сверхединичным, а вращательным момент уже при 3 м/с у «бочки» трехметрового диаметра такой, что генератору на 1 кВт с предельной нагрузкой, как говорится, лучше и не дергаться.

Видео: ветрогенератор Ленца

В 60-х в СССР Е. С. Бирюков запатентовал карусельную ВСУ с КИЭВ 46%. Немного позже В. Блинов добился от конструкции на том же принципе КИЭВ 58%, но данных о ее испытаниях нет. А натурные испытания ВСУ Бирюкова были проведены сотрудниками журнала «Изобретатель и рационализатор». Двухэтажный ротор диаметром 0,75 м и высотой 2 м при свежем ветре раскручивал на полную мощность асинхронный генератор 1,2 кВт и выдерживал без поломки 30 м/с. Чертежи ВСУ Бирюкова приведены на рис.

  1. ротор из кровельной оцинковки;
  2. самоустанавливающийся двухрядный шариковый подшипник;
  3. ванты – 5 мм стальной трос;
  4. ось-древко – стальная труба с толщиной стенок 1,5-2,5 мм;
  5. рычаги аэродинамического регулятора оборотов;
  6. лопасти регулятора оборотов – 3-4 мм фанера или листовой пластик;
  7. тяги регулятора оборотов;
  8. груз регулятора оборотов, его вес определяет частоту вращения;
  9. ведущий шкив – велосипедное колесо без шины с камерой;
  10. подпятник – упорно-опорный подшипник;
  11. ведомый шкив – штатный шкив генератора;
  12. генератор.

Бирюков на свою ВСУ получил сразу несколько авторских свидетельств. Во-первых, обратите внимание на разрез ротора. При разгоне он работает подобно ВС, создавая большой стартовый момент. По мере раскрутки во внешних карманах лопастей создается вихревая подушка. С точки зрения ветра, лопасти становятся профилированными, и ротор превращается в быстроходный ортогонал, причем виртуальный профиль меняется соответственно силе ветра.

Во-вторых, профилированный канал между лопастями в рабочем диапазоне скоростей работает как центральное тело. Если же ветер усиливается, то в нем также создается вихревая подушка, выходящая за пределы ротора. Возникает такой же вихревой кокон, как вокруг ВСУ с направляющим аппаратом. Энергия на его создание берется от ветра, и тому на поломку ветряка ее уже не хватает.

В-третьих, регулятор оборотов предназначен прежде всего для турбины. Он держит ее обороты оптимальными с точки зрения КИЭВ. А оптимум частоты вращения генератора обеспечивается выбором передаточного отношения механики.

Примечание: после публикаций в ИР за 1965 г. ВСУ Бирюкова канула в небытие. Ответа от инстанций автор так и не дождался. Судьба многих советских изобретений. Говорят, какой-то японец стал миллиардером, регулярно читая советские популярно-технические журналы и патентуя у себя все, заслуживающее внимания.

Лопастники

Как у сказано, по классике горизонтальный ветрогенератор с лопастным ротором – наилучший. Но, во-первых, ему нужен стабильный хотя бы средней силы ветер. Во-вторых, конструкция для самодельщика таит в себе немало подводных камней, из-за чего нередко плод долгих упорных трудов в лучшем случае освещает туалет, прихожую или крыльцо, а то и оказывается способен только раскрутить самого себя.

По схемам на рис. рассмотрим подробнее; позиции:

  • Фиг. А:
  1. лопасти ротора;
  2. генератор;
  3. станина генератора;
  4. защитный флюгер (ураганная лопата);
  5. токосъемник;
  6. шасси;
  7. поворотный узел;
  8. рабочий флюгер;
  9. мачта;
  10. хомут под ванты.
  • Фиг. Б, вид сверху:
  1. защитный флюгер;
  2. рабочий флюгер;
  3. регулятор натяжения пружины защитного флюгера.
  • Фиг. Г, токосъемник:
  1. коллектор с медными неразрезными кольцевыми шинами;
  2. подпружиненные меднографитовые щетки.

Примечание: ураганная защита для горизонтального лопастника диаметром более 1 м совершенно необходима, т.к. создать вокруг себя вихревой кокон он не способен. При меньших размерах можно добиться выносливости ротора до 30 м/с с лопастями из пропилена.

Итак, где нас ждут «спотыки»?

Лопасти

Рассчитывать добиться мощности на валу генератора более 150-200 Вт на лопастях любого размаха, вырезанных из толстостенной пластиковой трубы, как часто советуют – надежды беспросветного дилетанта. Лопасть из трубы (если только она не настолько толстая, что используется просто как заготовка) будет иметь сегментный профиль, т.е. его верхняя, или обе поверхности будут дугами окружности.

Сегментные профили пригодны для несжимаемой среды, скажем, для подводных крыльев или лопастей гребного винта. Для газов же нужна лопасть переменного профиля и шага, для примера см. рис.; размах – 2 м. Это будет сложное и трудоемкое изделие, требующее кропотливого расчета во всеоружии теории, продувок в трубе и натурных испытаний.

Генератор

При насадке ротора прямо на его вал штатный подшипник скоро разобьется – одинаковой нагрузки на все лопасти в ветряках не бывает. Нужен промежуточный вал со специальным опорным подшипником и механическая передача от него на генератор. Для больших ветряков опорный подшипник берут самоустанавливающийся двухрядный; в лучших моделях – трехъярусный, Фиг. Д на рис. выше. Такой позволяет валу ротора не только слегка изгибаться, но и немного смещаться из стороны в сторону или вверх-вниз.

Примечание: на разработку опорного подшипника для ВСУ типа EuroWind ушло около 30 лет.

Аварийный флюгер

Принцип его работы показывает Фиг. В. Ветер, усиливаясь, давит на лопату, пружина растягивается, ротор перекашивается, обороты его падают и в конце концов он становится параллельно потоку. Вроде бы все хорошо, но – гладко было на бумаге…

Попробуйте в ветреный день удержать за ручку параллельно ветру крышку от выварки или большой кастрюли. Только осторожно – вертлявая железяка может садануть по физиономbии так, что расквасит нос, рассечет губу, а то и выбьет глаз.

Плоский ветер бывает только в теоретических выкладках и, с достаточной для практики точностью, в аэродинамических трубах. Реально же ураган ветряки с ураганной лопатой корежит больше, чем вовсе беззащитные. Лучше все-таки менять исковерканные лопасти, чем делать заново все. В промышленных установках – другое дело. Там шаг лопастей, по каждой в отдельности, отслеживает и регулирует автоматика под управлением бортового компьютера. И делаются они из сверхпрочных композитов, а не из водопроводных труб.

Токосъемник

Это – регулярно обслуживаемый узел. Любой энергетик знает, что коллектор со щетками нужно чистить, смазывать, регулировать. А мачта – из водопроводной трубы. Не залезешь, раз в месяц-два придется весь ветряк валить на землю и потом опять поднимать. Сколько он протянет от такой «профилактики»?

Видео: лопастной ветрогенератор + солнечная панель для электроснабжения дачи

Мини и микро

Но с уменьшением размеров лопастника трудности падают по квадрату диаметра колеса. Изготовление горизонтальной лопастной ВСУ своими силами на мощность до 100 Вт уже возможно. Оптимальным будет 6-лопастный. При большем количестве лопастей диаметр ротора, рассчитанного на ту же мощность, будет меньше, но их окажется трудно прочно закрепить на ступице. Роторы о менее чем 6 лопастях можно не иметь в виду: 2-лопастнику на 100 Вт нужен ротор диаметром 6,34 м, а 4-лопастнику той же мощности – 4,5 м. Для 6-лопастного зависимость мощность – диаметр выражается следующим образом:

  • 10 Вт – 1,16 м.
  • 20 Вт – 1,64 м.
  • 30 Вт – 2 м.
  • 40 Вт – 2,32 м.
  • 50 Вт – 2,6 м.
  • 60 Вт – 2,84 м.
  • 70 Вт – 3,08 м.
  • 80 Вт – 3,28 м.
  • 90 Вт – 3,48 м.
  • 100 Вт – 3,68 м.
  • 300 Вт – 6,34 м.

Оптимальным будет рассчитывать на мощность 10-20 Вт. Во-первых, лопасть из пластика размахом более 0,8 м без дополнительных мер защиты не выдержит ветер более 20 м/с. Во-вторых, при размахе лопасти до тех же 0,8 м линейная скорость ее концов не превысит скорость ветра более чем втрое, и требования к профилировке с круткой снижаются на порядки; здесь уже вполне удовлетворительно будет работать «корытце» с сегментным профилем из трубы, поз. Б на рис. А 10-20 Вт обеспечат питание планшетки, подзарядку смартфона или засветят лампочку-экономку.

Далее, выбираем генератор. Отлично подойдет китайский моторчик – ступица колеса для электровелосипедов, поз. 1 на рис. Его мощность как мотора – 200-300 Вт, но в режиме генератора он даст примерно до 100 Вт. Но подойдет ли он нам по оборотам?

Показатель быстроходности z для 6 лопастей равен 3. Формула для расчета скорости вращения под нагрузкой – N = v/l*z*60, где N – частота вращения, 1/мин, v – скорость ветра, а l – длина окружности ротора. При размахе лопасти 0,8 м и ветре 5 м/с получаем 72 об/мин; при 20 м/с – 288 об/мин. Примерно с такой же скоростью вращается и велосипедное колесо, так что свои 10-20 Вт от генератора, способного дать 100, мы уж снимем. Можно ротор сажать прямо на его вал.

Но тут возникает следующая проблема: мы, потратив немало труда и денег, хотя бы на моторчик, получили… игрушку! Что такое 10-20, ну, 50 Вт? А лопастный ветряк, способный запитать хотя бы телевизор, дома не сделаешь. Нельзя ли купить готовый мини-ветрогенератор, и не обойдется ли он дешевле? Еще как можно, и еще как дешевле, см. поз. 4 и 5. Кроме того, он будет еще и мобильным. Поставил на пенек – и пользуйся.

Второй вариант – если где-то валяется шаговый двигатель от старого 5- или 8-дюймового дисковода, или от привода бумаги или каретки негодного струйного или матричного принтера. Он может работать как генератор, и приделать к нему карусельный ротор из консервных банок (поз. 6) проще, чем собирать конструкцию наподобие показанной на поз. 3.

В целом по «лопастникам» вывод однозначен: самодельные – скорее для того, чтобы помастерить всласть, но не для реальной долговременной энергоотдачи.

Видео: простейший ветрогенератор для освещения дачи

Парусники

Парусный ветрогенератор известен давно, но мягкие полотнища его лопастей (см. рис.) начали делать с появлением высокопрочных износостойких синтетических тканей и пленок. Многолопастные ветряки с жесткими парусами широко разошлись по миру как привод маломощных автоматических водокачек, но их техданные ниже даже чем у каруселей.

Однако мягкий парус как крыло ветряка, похоже, оказался не так-то прост. Дело не в ветроустойчивости (производители не ограничивают максимально допустимую скорость ветра): яхсменам-парусникам и так известно, что ветру разорвать полотнище бермудского паруса практически невозможно. Скорее шкот вырвет, или мачту сломает, или вся посудина сделает «поворот оверкиль». Дело в энергетике.

К сожалению, точных данных испытаний не удается найти. По отзывам пользователей удалось составить «синтетические» зависимости для установки ВЭУ-4.380/220.50 таганрогского производства с диаметром ветроколеса 5 м, массой ветроголовки 160 кг и частотой вращения до 40 1/мин; они представлены на рис.

Разумеется, ручательств за 100% достоверность быть не может, но и так видно, что плоско-механистической моделью тут и не пахнет. Никак не может 5-метровое колесо на плоском ветре в 3 м/с дать около 1 кВт, при 7 м/с выйти на плато по мощности и далее держать ее до жестокого шторма. Производители, кстати, заявляют, что номинальные 4 кВт можно получить и при 3 м/с, но при установке их силами по результатам исследований местной аэрологии.

Количественной теории также не обнаруживается; пояснения разработчиков маловразумительны. Однако, поскольку таганрогские ВЭУ народ покупает, и они работают, остается предположить, что заявленные коническая циркуляция и пропульсивный эффект – не фикция. Во всяком случае, возможны.

Тогда, выходит, ПЕРЕД ротором, по закону сохранения импульса, должен возникнуть тоже конический вихрь, но расширяющийся и медленный. И такая воронка будет сгонять ветер к ротору, его эффективная поверхность получится больше ометаемой, а КИЭВ – сверхединичным.

Пролить свет на этот вопрос могли бы натурные измерения поля давления перед ротором, хотя бы бытовым анероидом. Если оно окажется выше, чем с боков в стороне, то, действительно, парусные ВСУ работают, как жук летает.

Самодельный генератор

Из сказанного выше ясно, что самодельщикам лучше браться или за вертикалки, или за парусники. Но те и другие очень медленные, а передача на быстроходный генератор – лишняя работа, лишние затраты и потери. Можно ли сделать эффективный тихоходный электрогенератор самому?

Да, можно, на магнитах из ниобиевого сплава, т. наз. супермагнитах. Процесс изготовления основных деталей показан на рис. Катушки – каждая из 55 витков медного 1 мм провода в термостойкой высокопрочной эмалевой изоляции, ПЭММ, ПЭТВ и т.п. Высота обмоток – 9 мм.

Обратите внимание на пазы под шпонки в половинах ротора. Они должны быть расположены так, чтобы магниты (они приклеиваются к магнитопроводу эпоксидкой или акрилом) после сборки сошлись разноименными полюсами. «Блины» (магнитопроводы) должны быть изготовлены из магнитомягкого ферромагнетика; подойдет обычная конструкционная сталь. Толщина «блинов» – не менее 6 мм.

Вообще-то лучше купить магниты с осевым отверстием и притянуть их винтами; супермагниты притягиваются со страшной силой. По этой же причине на вал между «блинами» надевается цилиндрическая проставка высотой 12 мм.

Обмотки, составляющие секции статора, соединяются по схемам, также приведенным на рис. Спаянные концы не должны быть натянуты, но должны образовывать петли, иначе эпоксидка, которой будет залит статор, застывая, может порвать провода.

Заливают статор в изложнице до толщины 10 мм. Центрировать и балансировать не нужно, статор не вращается. Зазор между ротором и статором – по 1 мм с каждой стороны. Статор в корпусе генератора нужно надежно зафиксировать не только от смещения по оси, но и от проворачивания; сильное магнитное поле при токе в нагрузке будет тянуть его за собой.

Видео: генератор для ветряка своими руками

Вывод

И что же мы имеем напоследок? Интерес к «лопастникам» объясняется скорее их эффектным внешним видом, чем действительными эксплуатационными качествами в самодельном исполнении и на малых мощностях. Самодельная карусельная ВСУ даст «дежурную» мощность для зарядки автоаккумулятора или энергоснабжения небольшого дома.

А вот с парусными ВСУ стоит поэкспериментировать мастерам с творческой жилкой, особенно в мини-исполнении, с колесом 1-2 м диаметром. Если предположения разработчиков верны, то с такого можно будет снять, посредством описанного выше китайского движка-генератора, все его 200-300 Вт.

Андрей сказал(а):

Спасибо за вашу бесплатную консультацию…А цены “от фирм”не реально дороги,и я думаю,что мастеровые люди из глубинки смогут сделать генераторы подобные вашему.А аккамуляторы Li-po можно выписать из Китая,инверторы в Челябинске делают очень хорошие (с плавным синусом).А паруса,лопасти или роторы – это очередной повод для полёта мысли наших рукастых Русских мужиков.

Иван сказал(а):

вопрос:
Для ветряков с вертикальной осью(позиция 1) и варианта “Ленца” возможно добавить дополнительную деталь – крыльчатку,выставляющуюся по ветру, и закрывающую от него же бесполезную сторону(идущую в сторону ветра). То есть ветер будет не лопасть тормозить, а этот “экран”. Постановка по ветру “хвостом”, находящимся за самим ветряком ниже и выше лопостей(гребней). Читал статью и родилась идея.

Нажимая кнопку «Добавить комментарий», я соглашаюсь с сайта.

Рекомендуем почитать

Наверх