Металлическое стекло состав. Аморфные сплавы (металлические стекла)

Две фазы 25.04.2024

Формирование и распространение полос сдвига на поверхности образца металлического стекла (Pd79Ag3.5P6Si9.5Ge2)


Под сканирующим электронным микроскопом хорошо видна ступенчатая структура полосы сдвига.


По краям трещин формируются аналогичные полосы сдвига, что приводит к разрушению вершины трещины и препятствует её дальнейшему росту.

Благодаря своей аморфной структуре металлические стекла могут быть прочными, как сталь, и пластичными, как полимерные материалы, они способны проводить электрический ток и обладают высокой коррозионной стойкостью. Такие материалы могли бы получить широкое распространение при изготовлении медицинских имплантатов и разнообразных электронных устройств, если бы не одно неприятное свойство: хрупкость. Металлические стекла, как правило, являются ломкими и неравномерно сопротивляются усталостным нагрузкам, что ставит под вопрос их надежность. Использование многокомпонентных аморфных металлов (композитов) решает эту проблему, однако для монолитных металлических стекол она до сих пор актуальна.

В рамках нового исследования , проведенного совместно учеными из Лаборатории Беркли и Калифорнийского технологического института, был найден способ повысить усталостную прочность объемных металлических стекол. Объемное металлическое стекло на основе палладия, подвергнутое усталостным нагрузкам, проявило себя ничуть не хуже, чем лучшие из композитных металлических стекол. Его усталостная прочность сравнима с этим показателем для широко используемых поликристаллических конструкционных металлов и сплавов, таких как сталь, алюминий и титан.

Под нагрузкой на поверхности палладиевого металлического стекла образуется полоса сдвига — локальная область значительной деформации, которая принимает ступенчатую форму. При этом по краям трещин, разделяющих «ступени», возникают такие же полосы сдвига, что притупляет вершины трещин и препятствует их дальнейшему распространению.

Палладий характеризуется высоким соотношением модулей объемного сжатия и сдвига , что скрадывает присущую стеклообразным материалам хрупкость, поскольку образование «многоуровневых» полос сдвига, препятствующих дальнейшему росту трещин, оказывается энергетически более выгодным, чем формирование крупных трещин, приводящих к быстрому разрушению образца. Вкупе с высоким

Охлаждения?106 К/с). Быстрый теплоотвод достигается, если, по крайней мере, один из размеров изготовляемого образца достаточно мал (фольга, лента, проволока). Расплющиванием капли расплава между охлаждаемыми наковальнями получают фольгу шириной 15 - 25 мм и толщиной 40-70 мкм, а охлаждением на вращающемся барабане (диске) или прокаткой струи между двумя валками - ленту шириной 3-6 мм и толщиной 40-100 мкм. Выдавливанием расплава в охлаждённую могут быть изготовлены М. с. в виде проволоки.

Состав М. с.: = 80% переходных (Cr, Mn, Fe, Co, Ni, Zr, Pr и др.) или благородных металлов и ок. 20% поливалентных неметаллов (В, С, N, Si, P, Ge и др.), играющих роль стеклообразующих элементов. Примеры - бинарные сплавы (Au81Si19, Pd81Si19 и Fe80B20) и псевдобинарные сплавы, состоящие из 3-5 и более компонентов. М. с.- метастабильные системы, к-рые кристаллизуются при нагревании до темп-ры, равной ок. 1/2 темп-ры плавления.

Изучение М. с. позволяет исследовать природу металлич., магн. и др. св-в тв. тел. Высокая (приближается к теор. пределу для кристаллов) в сочетании с большой пластичностью и высокой коррозионной стойкостью делает М. с. перспективными упрочняющими элементами для материалов и изделий. Нек-рые М. с. (напр., Fe80B20) - ферромагнетики с очень низкой коэрцитивной силой и высокой магнитной проницаемостью, что обусловливает их применение в качестве магнитно-мягких материалов. Другой важный класс аморфных магн. материалов - сплавы редких земель с переходными металлами. Перспективно использование электрич. и акустич. св-в М. с. (высокое и слабо зависящее от темп-ры электрич. сопротивление, слабое вука).

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

МЕТАЛЛИЧЕСКИЕ СТЕКЛА

(метглассы) - разновидность аморфных металлов, аморфные сплавы с ме-таллич. типом проводимости, к-рые не имеют дальнего порядка в пространств, расположении атомов и характеризуются макроскопич. коэф. сдвиговой вязкости Па. Их изготавливают в виде плёнок, лент и проволок с помощью спец. техн. приёмов (закалка из расплава при типичных скоростях охлаждения ~10 в К/с, термич. напыление или в вакууме на охлаждаемую подложку и т. д.), к-рые ведут к быстрому затвердеванию сплавляемых компонентов в относительно узком температурном интервале около т. н. температуры стеклования T g .

M. с. обладают уникальным сочетанием высоких ме-ханич., магн., электрич. и коррозионных свойств .

M. с. исключительно тверды и обладают высокой прочностью на ; напр., s у для M. с. Fe 80 B 20 достигает 3,6-10° Н/м 2 (370кгс/мм 2) , что намного превосходит значение s у лучших сталей; по этой причине M. с. применяют для армировки в композиц. материалах (композитах).

По магн. свойствам M. с. подразделяются на два технологически важных класса. M. с. класса "ферромагнитный переходный металл (Fe, Со, Ni, в количестве 75-85%)-неметалл (В, С, Si, Р- 15-25%)" являются магнитно-мягкими материалами с незначительной коэрцитивной силой Н с ввиду отсутствия магн.-кристаллич. анизотропии ( макроскопич. магнитная анизотропия обусловлена при ненулевой магнитострикции внутр. или внеш. напряжениями, к-рые могут быть снижены при отжиге, а также наведённой анизотропией в расположении соседних атомов). Магнитная атомная структура осн. таких систем может быть представлена в виде совокупности параллельно ориентированных локализованных магн. моментов при отсутствии трансляц. периодичности в их пространств, размещении, причём благодаря эффектам локального окружения магн. ионов по своей величине могут флуктуировать (см. Аморфные магнетики). M. с. этого класса имеют почти прямоугольную петлю гистерезиса магнитного с высоким значением индукции насыщения B s , что в сочетании с высоким уд. электрич. сопротивлением r и, следовательно, низкими потерями на делает M. с. по сравнению с электротехн. сталями более предпочтительными при применении, напр., в трансформаторах .

Сравнительные характеристики нек-рых кристаллич. и зарубежных аморфных магнитно-мягких сплавов (а также одного из отечеств. M. с. 94 ЖСР - А на основе железа ) приведены в таблице.

M. с. класса "редкоземельный элемент - переходный d- металл", обычно приготавливаемые в виде плёнок с помощью катодного распыления, в ряде случаев (Gd - Со, Gd - Fe) обнаруживают коллинеарную ферромагн. структуру со свойствами, перспективными для создания устройств с памятью на цилиндрических магнитных доменах (ЦМД), напр, низкой намагниченностью насыщения M s и высокой анизотропией, перпендикулярной плоскости плёнки . В большинстве др. случаев сильная локальная одноионная со случайным распределением осей лёгкого намагничивания, присущая редкоземельным ионам с ненулевым орбитальным моментом, обычно приводит в M. с. этого класса к хао-тич. неколлинеарной структуре типа спинового стекла.

Сравнительная характеристика некоторых магнитно-мягких кристаллических и аморфных сплавов (при 300 К) .


* T с - температура перехода в парамагнитное состояние (Кюри точка).

** Метгласс - зарегистрированная торговая марка корпорации Allied Chemical Corporation.

Из электрич. свойств M. с. наиб, существенны большая величина остаточного электрич. сопротивления (обычно в 2-4 раза больше, чем у кристаллич. аналогов) и малое значение температурного коэф. сопротивления (вне температурного интервала протекания процессов структурной релаксации и кристаллизации).

Ряд M. с. класса "переходный металл - неметалл" с добавками Cr и P обнаруживает исключит, коррозионную стойкость в агрессивных средах, превышающую на неск. порядков стойкость нержавеющих сталей . Неупорядоченность атомной структуры M. с. является также причиной высокой стойкости их свойств к воздействию радиации.

Аморфная структура M. с., являясь метастабильной, обладает очень большим временем жизни. Напр., оценки временного интервала эксплуатации, определяемого началом процесса кристаллизации, дают для одного из наименее стабильных M. с.ок. 550 лет при 175 0 C и 25 лет при 200 0 C .

Своеобразие физ. свойств M. с. является следствием аморфности их структуры (её хим. гомогенности, отсутствия межзёренных границ и линейных дефектов типа дислокаций). На рентгено-, электроне- и нейтроно-граммах M. с. имеется неск. диффузных гало, к-рые описываются с помощью ф-ции радиального распределения атомов (ФРРА) , где р(г) - усреднённая атомная на расстоянии г от случайного, выбранного за начало отсчёта атома (рис.). ФРРА не даёт полной информации о расположении атомов в трёхмерном пространстве, однако в сочетании с др. методами (исследованием тонкой структуры рентг. спектров поглощения, аннигиляцией позитронов и т. д.) она даёт возможность отобрать те структурные модели M. с.,

Нормированная функция радиального распределения атомов - средняя атомная плотность вещества) для аморфного железа .


к-рые лучше всего соответствуют эксперим. данным. Сходство ФРРА для аморфного и жидкого состояний, особенно на больших и ср. расстояниях, позволило на первых порах использовать для одноатомных M. с. модель случайной плотной упаковки твёрдых сфер, в своё предложенную Дж. Д. Берналом (J. D. Bernal) для одноатомных жидкостей, а для M. с. типа "металл - неметалл" - модификацию этой модели , согласно к-рой небольшие атомы неметалла заполняют большие пустоты ("дырки" Бернала) в случайной плотной упаковке атомов металла и не соседствуют друг с другом. Однако данные дифракц. экспериментов (напр., расщепление второго пика ФРРА, отсутствующее в жидких металлах) говорят о существовании в M. с. ближнего атомного порядка. Расчёты термодинамич. устойчивости атомных микрокластеров и структурного фактора для M. с. указывают на предпочтительность для них модели ближнего порядка , в к-рой осн. элементом структуры является икосаэдр - правильный двадцатигранник, получаемый упаковкой 12 слегка искажённых тетраэдров и обладающий 12 вершинами с 5 сходящимися рёбрами, через к-рые можно провести 6 осей симметрии пятого порядка.

Хотя икосаэдрич. не может быть элементом построения кристалла, поскольку невозможно плотно заполнить трёхмерное путём периодич. трансляций икосаэдра без появления несогласованности в структуре, веским аргументом в пользу икосаэдрич. ближнего порядка в M. с. является также недавнее открытие в сплаве Al 86 MnI 4 принципиально нового типа атомной структуры твёрдых тел - квазикристаллич. структуры с икосаэдрич. дальним порядком (см. Квазикристалл). Подобно M. с., квазикристаллы получаются быстрой закалкой из расплава /яятт. тгля оппепелённых составов в системах

Xf_ Fe), но, в отличие от M. с., дают на рентгенограммах когерентные брэгговские рефлексы, соответствующие симметрии пятого или даже десятого порядка . Нек-рыеМ. с. (напр., Pd 60 U 20 Si 20 ) после отжига переходят в квазикристаллич. состояние, оона-руживая тем самым тесную генетич. связь структурного состояния M. с. и квазикристаллич. состояния.

Лит -1)Петраковский Г. А., Аморфные магнетики, "УФН","1981,т. 134, с. 305; 2) Люборский Ф. В., Перспективы применения аморфных сплавов в магнитных устройствах, в кн.· Магнетизм аморфных систем, пер. с англ., M., Ii)Sl; 3)Хандрих К., Кобе С., Аморфные ферро- и ферримагнетики, пер. с нем., M., 1982; 4) Крапошин В. С., Линецкий Я. Л., Физические свойства металлов и сплавов в аморфном состоянии, в кн.: Итоги науки и техники. Металловедение · термическая обработка, т. 16, M., 1982; 5) Металлические стекла, пер. с англ., M., 1984; 6) Amorphous metallic alloys ed by F. Luborsky, L.- , 1983; 7) Аморфные сплавы, M., 1984; 8) Преображенский A. А., Бишард E. Г., Магнитные материалы и , 3 изд., M 1986; 9) Iсhikawа Т., Electron diffraction study of the local atomic arrangement in amorphous iron and nickel films, "Phys. Stat. Sol. (a)", 1973, v. 19, N, 2, p. 707; 10) Polk D. E The structure of glassy metallic alloys, "Acta Metall.", 1972, v. M, № 4 r 485; 11) Sасhdev S., Nelsоn D. R., Order m metallic glasses and icosahedral crystals, "Phys. Rev. B", 1985, v. 32, № 7 r 4592" 12) Sheсhtman D. и др., Metallic phase with long-range orientational order and no translational symmetry, "Phys. Rev. Lett.", 1984, v. 53, M 20, p. 1951; 13) Levine D., Steinhardt P. J., Quasicrystals. 1-2, "Phys. Rev. B", 1986 v. 34, MJ 2, p. 596; 14) Heльсон Д. Р., Квазикристаллы пер с англ., "В мире науки", 1986, № 10, с. 19; 15) Po-о h S J., Drehmаn A. J., Lawless K. R., Glassy to icosahedral phase transformation in Pd - U - Si alloys, "Phys. Rev Lett ", 1985, v. 55, Mi 21, p. 2324. M. В. Медведев.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .

Полученное при помощи просвечивающего электронного микроскопа изображение разных уровней кристаллизованности аморфного металла

Инженеры из Университета Южной Калифорнии получили новый вид металлического стекла , отличающийся повышенной упругостью. Материал сочетает в себе, кажется, несочетаемые свойства – твёрдость, прочность и эластичность. Материал, получивший технологическое название SAM2X5-630, обладает наивысшей ударной прочностью из всех известных металлических стёкол.

Металлические стёкла, или аморфные металлы - класс металлических твердых тел с аморфной структурой. В отличие от металлов с их кристаллической структурой, таковая у аморфных металлов аналогична атомной структуре переохлаждённых расплавов.


Слева прыгает шарик из нового металлического стекла, справа – из обычной стали

Материал способен выдерживать сильные удары, при этом он не крошится и не ломается, а возвращает первоначальную форму. Потенциал его применения практически безграничен – начиная от свёрл и бронежилетов и заканчивая имплантатами для укрепления костей и защитой космических спутников.

Обычно аморфные металлы получают нагреванием до 630 °C, а затем очень быстрым (порядка градуса в секунду) охлаждением. Материал SAM2X5-630 был получен нагреванием порошкообразного состава на основе железа (Fe 49.7 Cr 17.7 Mn 1.9 Mo 7.4 W 1.6 B 15.2 C 3.8 Si 2.4).

Уникальные свойства металла происходят из удачной находки сочетания температуры нагревания и скорости охлаждения – именно такие условия, которые испытал полученный состав, приводят к образованию локальных очагов слабо выраженной кристаллической структуры. Другие условия нагрева или охлаждения приводят к получению полностью аморфных металлов со случайным расположением атомов.

«У него почти нет внутренней структуры, и в этом он похож на стекло, но при этом встречаются регионы с кристаллизацией,- говорит Вероника Эльясон , ассистент-профессор из Инженерной школы им.Витерби при университете, и ведущий автор работы. – Мы пока понятия не имеем, почему небольшое количество кристаллизировавшихся участков в металлических стёклах приводят к таким сильным различиям в реакциях на удар».

Динамический предел упругости Гюгонио (максимальное воздействие, которое материал выдерживает без необратимой деформации), был определён для SAM2X5-630 в районе 12 ГПа. У нержавеющей стали этот показатель равен 0,2 ГПа, у карбида вольфрама (используемого для создания твёрдых инструментов и сердечников бронебойных пуль) – 4,5 ГПа, у алмазов – до 60 ГПа.

Изучение аморфных металлов началось в 1960 году в Калифорнийском технологическом институте – группой учёных было получено первое металлическое стекло Au 75 Si 25 . С тех пор было получено множество подобных материалов с интересными свойствами, однако пока область их практического применения нельзя назвать широкой из-за их высокой стоимости.

Например, полученный недавно в Японии Ti 40 Cu 36 Pd 14 Zr 10 - неканцерогенный, в три раза прочнее титана, мало изнашивается, при трении не образует порошок, а по модулю продольной упругости практически совпадает с человеческими костями – в потенциале его можно будет использовать как прекрасную искусственную замену суставов.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

металлический сплав стекло

Введение

1. Металлические стёкла

2. Состав, структура, свойства

3. Механические свойства металлических стекол

4. Область применения

Заключение

Список используемой литературы

Введение

Прочность и пластичность являются актуальными направлениями исследований механики разрушения. Данные области механики деформируемого твердого тела интенсивно развиваются в большой мере в связи с всё возрастающими запросами промышленности, из-за чего роль новых материалов и технологий с каждым годом возрастает. Их разработка, получение и изучение свойств является объективной необходимостью развития человеческого общества.

Открытие электропластического эффекта на металлах привело к более глубокому пониманию механизма пластической деформации. Появилась возможность управлять механическими свойствами металлических материалов.

В экспериментах с импульсным током было обнаружено увеличение пластичности и уменьшение хрупкости металла. Электрический ток вызывает также увеличение скорости релаксации напряжений в металле и оказывается удобным технологическим фактором для снятия внутренних напряжений. Электропластический эффект линейно зависит от плотности тока, наиболее выражен при импульсном токе, а при переменном токе отсутствует.

Целесообразность расширения использования электропластического эффекта стала очевидной, так как его применение снижает энергетические затраты, а значит и экономические. В частности, в промышленности различные материалы широко используются в электрических полях, вследствие чего их механические характеристики меняются.

Физические свойства металлических стекол (высокая прочность в сочетании с пластичностью, высокая твердость, коррозионная стойкость, стойкость к истиранию и удельное электросопротивление и др.) определяются не только химическим составом, но и структурным состоянием этих материалов.

Массовое использование аморфных металлических сплавов, работающих в электрических полях, ставит задачи по изучению их механических свойств в условиях действия импульсного электрического тока.

1. Металлические стёкла

Стекловидные металлы, метглассы, металлич. Сплавы в стеклообразном состоянии, образующиеся при сверхбыстром охлаждении металлического расплава (скорость охлаждения 106 К/с). Быстрый теплоотвод достигается, если, по крайней мере, один из размеров изготовляемого образца достаточно мал (фольга, лента, проволока). Расплющиванием капли расплава между охлаждаемыми наковальнями получают фольгушириной 15 -- 25 мм и толщиной 40--70 мкм, а охлаждением на вращающемся барабане (диске) или прокаткой струи между двумя валками -- ленту шириной 3--6 мм и толщиной 40--100 мкм. Выдавливанием расплава в охлаждённую жидкость могут быть изготовлены в виде проволоки.

Изучение металлических стёкл позволяет исследовать природу металлических, магнитных и другие свойства твёрдых тел.

Высокая прочность (приближается к теоретическому пределу для кристаллов) в сочетании с большой пластичностью и высокой коррозионной стойкостью делает металлические стёкла перспективными упрочняющими элементами для материалов и изделий.

Некоторые металлические стёкла например Fe80B20 --ферромагнетики с очень низкой коэрцитивной силой и высокой магнитной проницаемостью, что обусловливает их применение в качестве магнитно-мягких материалов. Другой важный класс аморфных магнитных материалов -- сплавы редких земель с переходными металлами. Перспективно использование электрических и акустических свойств металлических стёкл (высокое и слабо зависящее от температуры, электричества, сопротивления, слабое поглащение вука).

В 90х объемные металлические стекла (ОМС) с размером > 1 мм в каждом из 3х пространственных измерений (Рис. 1) удалось получить на базе широко распространенных металлов: магния, титана, меди, железа и т.д. в двойных, тройных, четверных и многокомпонентных сплавах.

Рис. 1. Образцы отливок объемные металлические стекла (оптическое изображение)

Статистический анализ имеющейся информации по ОМС показал рост их стеклообразующей способности от двойных к тройным и четверным сплавам.

2. Состав, структура, свойства

Состав металлических стёкл равен 80% переходных (Cr, Mn, Fe, Co, Ni, Zr, Pr и др.) или благородных металлов и около 20% поливалентных неметаллов (В, С, N, Si, P, Ge и др.), играющих роль стекло-образующих элементов. Примеры-- бинарные сплавы Au81Si19, Pd81Si19 и Fe80B20) и псевдобинарные сплавы, состоящие из 3--5 и более компонентов. Металлические стёкла -- метастабильные системы, которые кристаллизуются при нагревании до температуры, равной Ѕ температуры плавления.

Aтомная структура стёкол демонстрирующая отсутствие дальнего порядка в расположении атомов (Рис. 2) определяют их свойства, в частности механические. По величине прочности и удельной прочности они значительно превосходят соответствующие кристаллические сплавы из-за невозможности использования механизмов аккомодационной деформации дислокационного или двойникового типа. Условный предел текучести объемных металлических стёкл достигает ~2 GPa для объемных металлических стёкл на основе Cu, Ti и Zr, ~3 GPa на основе Ni, ~4 GPa на основе Fe, ~5 GPa на основе Fe и Co, а также 6 GРa для кобальтовых сплавов. Структура металлического стекла также обеспечивает упругую деформацию до 2 %, что в сочетании с высоким пределом текучести обуславливает большие значения запасенной энергии упругой деформации (показатели уy2/E и уy2/сЕ, где уy, с и Е - предел текучести, плотность и модуль Юнга, соответственно). Следует отметить, что недавние исследования указывают наличие атомных кластеров в объемных металлических стёкл.

Рис. 2. Изображение просвечивающей электронной микроскопии высокого разрешения и картины дифракции от выбранной области субмикроскопического размера (SAED) и наноразмера (NBD). Заметно отсутствие дальнего порядка в расположении атомов. Размер областей рассеяния показан кругами условно. (В России изучением структуры занимаются, в частности, А.С. Аронин и Г.Е. Абросимова)

Объемные металлические стекла обладают не только высокой прочностью, твердостью, износостойкостью и большими значениями упругой деформации до начала пластической деформации, но и высоким сопротивлением коррозии, включая самопроизвольную пассивацию в некоторых растворах. Высокая твердость, износостойкость, качество поверхности объемных металлических стёкл, а также текучесть при нагреве определяет их применение в микромашинах в качестве механизмов передач (шестеренок), компонентов высокоточных механических систем. Объёмные металлические стекла на основе железа и кобальта с намагниченностью насыщения до 1.5 T имеют рекордно низкие значения коэрцитивной силы менее 1 А/м и активно используются как магнитомягкие материалы. Следует отметить, что в России металлическими стеклами на основе железа и кобальта занимались такие ученые как А.М. Глезер, С.Д. Калошкин и многие другие. Явление стеклования, наблюдаемое при переходе из жидкости в стекло и расстекловывания при нагреве, является одной из самых важных не до конца решенных проблем физики твердого тела. А именно, являются ли аморфная и жидкая фазы одной и той же фазой, только наблюдаемой при разных температурах, или же имеет место фазовый переход из жидкого состояния в аморфное и обратно, и если это так, то какого рода этот фазовый переход? Некоторые успехи достигнуты с использованием компьютерного моделирования, но полной ясности еще нет.

Пластическое течение в металлических стеклах осуществляется в виде сильно локализованных сдвиговых деформационных полос. В случае, когда механические условия таковы, что удается избежать катастрофической нестабильности процесса, имеются множественные полосы сдвига при одноосном сжатии, изгибе, прокатке и протяжке, а также при локализованном индентировании.

Деформации в отдельных полосах исключительно велики. При исследовании поверхностных реплик с подвергшихся резкому изгибу лент Pd80Si20 с помощью трансмиссионной электронной микроскопии Масумото и Маддин наблюдали полосы сдвига шириной ~ 200 Е. С помощью интерференционной микроскопии на поверхности были обнаружены связанные с ними ступеньки высотой до 2000 ?, что свидетельствует о сдвиговых деформациях в полосе. Такие полосы появляются задолго до разрушения, следовательно, сдвиговая деформация разрушения материала превышает значение 200 Е. Способность выдерживать большие деформации связана с отсутствием жесткой пространственной направленности связей структуры или с тем, что аморфная матрица относительно свободна от таких макроскопических дефектов, как поры, оксидные включения, отдельные кристаллики и т.д. Первое объясняет пластичность металлических стекол по сравнению с другими неорганическими стеклами типа диоксида кремния, имеющими ковалентные связи; второе объясняет наличие более локализованной пластичности металлических стекол в сравнении с пластичностью при изгибе стальных листов.

Сильная локализованная сдвиговая деформация уже сама по себе свидетельствует об отсутствии деформационного упрочнения в металлических стеклах. Дополнительное подтверждение этому дают испытания на сжатие, выполненные Пампилло и Ченом на аморфном сплаве Pd77,5Cu6Si16,5. Стекло этого состава аморфизуется, что позволяет получать стержни большого диаметра (~ 2 мм), удобные для проведения испытаний на сжатие. Образцы подвергались сжатию до появления полос деформации. После этого они подверглись полировке для удаления образованных полосами ступенек на их поверхности и впоследствии были снова нагружены.

Оказалось, что полосы, возникшие после первого нагружения, проявились снова, хотя концентраторов напряжений, связанных со ступеньками скольжения на поверхности, не было. Этого не было бы при наличии деформационного упрочнения полос. Форма кривых «напряжение - деформация» свидетельствует об отсутствии деформационного упрочнения: напряжение, необходимое для пластического течения, сохраняется приблизительно постоянным.

3. Механические свойства металлических стекол

Вследствие отсутствия деформационного упрочнения деформация стекол в режиме одноосного растяжения механически нестабильна, пластическое течение перерастает в разрушение. Для проволок растяжение создает катастрофическую сдвиговую неустойчивость. В случае лент, чтобы исключить надрыв, проявлению подобной неустойчивости предшествует образование шейки. При этом шейку трудно обнаружить, хотя ориентировка сдвига ясно указывает на ее существование, а при более высоких температурах образуется более развитая шейка и легко наблюдаемая.

Для лент металлических стекол с постоянным поперечным сечением при растяжении типично разрушение путем распространения надрыва, характерное для тонких полос высокопрочных материалов. Разрушение начинается обычно в захватах вследствие существующих там концентраций напряжений. Надрыв распространяется аналогично винтовой дислокации в плоскости, ориентированной под углом ~ 45° по отношению к оси растяжения и нормали к поверхности ленты. В пластической зоне, примыкающей к трещине, осуществляется локализованная сдвиговая деформации, и по деформированному материалу происходит сдвиговый разрыв.

В радиально симметричном образце тенденция к надрыву устранена, и разрушение происходит одновременно со сдвиговой нестабильностью. По всему поперечному сечению образца под углом 45° к оси растяжения развивается исключительно сильная полоса сдвига, по которой и происходит сдвиговой разрыв.

На поверхности разрушения стекол обычно наблюдается небольшая гладкая область, соответствующая начальному сдвигу. Остальная часть поверхности отмечена "венообразным узором", который впервые наблюдал и описал Лими. Используя стереосканирующую электронную микроскопию, Лими с сотрудниками установили, что вены представляют собой выступы на плоском фоне. В материале зарождаются и распространяются по полосе сдвига сдвиговые дискообразные трещины. Там, где они встречаются, материал разрушается путем образования внутренних шеек, в результате чего появляются плавно закругляющиеся "вены". Образование сдвиговых дискообразных трещин происходит с участием дилатации (расширения или сжатия) образца. Это подтверждается тем фактом, что при растяжении аморфной проволоки в условиях наложенного гидростатического давления трещина возникает предпочтительно на наружной периферии зоны сдвига. В этом случае на поверхности разрушения преобладает семейство тесно расположенных, приблизительно параллельных вен, ориентированных перпендикулярно направлению сдвига. Короткие сегменты трещин распространяются как винтовые компоненты дислокационной петли, оставляя позади себя вены, которые являются аналогами диполей краевых дислокаций.

Окончательное разрушение проволоки, испытываемой на усталость, происходит всегда одновременно с общим течением по оставшейся части сечения, по которой еще не распространилась усталостная трещина. Разрушение ленты с базой происходит таким же образом, если прикладываемое растягивающее напряжение составляет приблизительно 99% от напряжения течения. В случае меньших уровней напряжений разрушение происходит под углом 45°. В последнем случае в центральной части сечения непосредственно перед усталостной трещиной имеет место трехосное напряженное состояние. Поверхность катастрофического разрушения ориентирована под углом 90° к оси растяжения. Макроскопически такое разрушение носит хрупкий характер. При этом усталостная трещина распространяется от места своего зарождения по площади, представляющей собой полуокружность. После этого происходит быстрое разрушение. Для поверхности разрушения, ориентированной под углом 90° к оси растяжения, характерен классический V-образный "шевронный" узор, линии которого ориентированы к месту образования трещины. При более подробном рассмотрении поверхности разрушения шевроны имеют пилообразную форму с поверхностями, расположенными наклонно по отношению к оси растяжения. Детальное изучение этих поверхностей показало, что они покрыты тонкой сеткой равноосного "венообразного" узора. Это свидетельствует о том, что даже при макроскопических условиях плоской деформации локальное разрушение происходит сдвиговым путем.

4. Область применения

Интерес к металлическим стеклам был инициирован, прежде всего, возможностями их применения в технике, основанными на необычных свойствах этих материалов.

Механические свойства металлических стёкол позволяют применять их в качестве упрочняющих нитей в композитных материалах, используемых в строительстве, аэронавтике и спорте, а также для армирования бетона и подобных материалов. Прочные ленты могут быть использованы в качестве намотки для упрочнения сосудов высокого давления или для построения больших маховых колес, используемых для аккумулирования энергии. Высокая твердость и отсутствие границ зерен позволяют получать отличные режущие кромки, в частности бритвенных лезвий. Могут найти применение некоторые виды пружин, изготовленных из металлических стекол.

Магнитные свойства, металлических стекол открывают возможность их применения в качестве материалов для сердечников индуктивных составляющих электронных схем, в силовых трансформаторах, где они могут заменить обычные сплавы Fe-Si с ориентированными зернами, а также в двигателях, в качестве магнито - мягких материалов для магнитного экранирования, в качестве записывающих магнитных головок, датчиков, возбудителей механических фильтров и линий задержки.

Благодаря своим электрическим свойствам металлические стекла могут применяться, например, в качестве термометров сопротивления и нагревателей при низких температурах и прецизионных резисторов с нулевым температурным коэффициентом сопротивления. Сверхпроводящие ленты из металлического стекла нечувствительны к радиационным повреждениям и, следовательно, могут оказаться предпочтительными для применений в технике термоядерного синтеза.

Хорошее сопротивление коррозии делает их очень ценными для химии, хирургии, биомедицины. Однако для таких применений в общем случае металлические стекла должны иметь не лентообразную, а какую-то другую форму.

Возможны также другие применения металлических стекол, например, в качестве фольги для пайки твердым припоем, эмиссионных катодов, плавких предохранителей и аккумуляторов водорода.

Заключение

Первоначально металлические стекла были предметом лишь научного интереса, как новое, необычное состояние твердого тела, однако сейчас они интенсивно используются в промышленности.

Появление металлических стекол (сплавов с низкой критической скоростью охлаждения, позволяющей получать в аморфном состоянии слитки весом до 1 кг и более) создало перспективу их применения и в качестве конструкционных материалов. У металлических стекол есть и недостатки. Они имеют довольно малую пластичность, а также теряют прочность при повышении скорости нагрузки. Однако все же аморфные сплавы можно считать пластичными стеклами: их можно подвергать вырубке и резке на полосы в штампах, на проволоку, их можно сплести и согнуть. Их них можно изготовить плетеные сетки, которые удачно заменят арматуру в железобетонных плитах, канаты, прочные волокнистые композиты и самые разные изделия, что позволит сэкономить огромное количество металла.

Список используемой литературы

1. Гилман Д.Д., Лими Х.Д. Металлические стекла. М.: Металлургия. 1984. 264с.

2. Бобров О. Л. , Лаптев С.Н. , Хоник В.А. Релаксация напряжений в массивном металлическом стекле Zr52.5Ti5CU17.9Ni14.6 AII0 // ФТТ. 2004. Т. 46. Вып. 6. С. 457 - 460.

3. Кожушка А.А., Синани А.Б. Скорость нагружения и хрупкость твердых тел. // ФТТ. 2005. Т. 47. Вып. 5. С. 812 - 815.

4. Альшиц В.И., Даринская Е.В., Колдаева М.В., Петржик Е.А. Магнитопластический эффект: основные свойства и физические механизмы // Кристаллография. 2003. Т. 48. Вып. 2. С. 826-854.

5. Моргунов Р.Б., Баскаков А.А., Трофимов И.Н., Якунин Д.В. Роль термоактивируемых процессов в формировании магниточувствительных комплексов точечных дефектов в монокристаллах NaCl: Eu // ФТТ. 2003. Т. 45. Вып. 2. С. 257-258.

Размещено на Allbest.ru

...

Подобные документы

    Классификация, маркировка, состав, структура, свойства и применение алюминия, меди и их сплавов. Диаграммы состояния конструкционных материалов. Физико-механические свойства и применение пластических масс, сравнение металлических и полимерных материалов.

    учебное пособие , добавлен 13.11.2013

    Достоинства и недостатки металлических конструкций. Классификация нагрузок и воздействий. Области применения и номенклатура металлических конструкций. Физико-механические свойства стали. Расчет металлических конструкций гражданских и промышленных зданий.

    презентация , добавлен 23.02.2015

    Краткий обзор и характеристики твердых материалов. Группы металлических и неметаллических твердых материалов. Сущность, формирования строения и механические свойства твердых сплавов. Производство и применение непокрытых и покрытых твердых сплавов.

    реферат , добавлен 19.07.2010

    Изучение методики построения диаграмм состояния металлических сплавов. Исследование физических процессов и превращений, протекающих при кристаллизации сплавов. Виды термической обработки. Анализ влияния температуры на растворимость химических компонентов.

    контрольная работа , добавлен 21.11.2013

    Улучшение эксплуатационных и технологических свойств металлического материала благодаря сплаву металлов. Фазы металлических сплавов. Диаграммы фазового равновесия. Состояние сплавов с неограниченной растворимостью компонентов в твердом состоянии.

    реферат , добавлен 31.07.2009

    Понятие о металлических сплавах. Виды двойных сплавов. Продукты, образующиеся при взаимодействии компонентов сплава в условиях термодинамического равновесия. Диаграммы состояния двойных сплавов, характер изменения свойств в зависимости от их состава.

    контрольная работа , добавлен 08.12.2013

    Аустенитные и азотосодержащие коррозионно-стойкие стали: способы получения, технология производства, выплавка, термомеханическая обработка, основные свойства. Метод электрошлакового переплава металлических электродов в водоохлаждаемый кристаллизатор.

    дипломная работа , добавлен 19.06.2011

    Основные сорта стекол, применяемые при машинном изготовлении стеклянных трубок. Возможные соединения керамических материалов с соответствующими сортами стекла. Обработка поверхности стекол. Его сверление и резание. Травление стекла и плавленого кварца.

    реферат , добавлен 28.09.2009

    Материалы для получения искусственной стекольной массы. Технология варки стекла. Физические, механические, термические и электрические свойства. Газопроницаемость и обезгаживание стекол. Химическая стойкость. Исходные материалы для стеклодувных работ.

    курсовая работа , добавлен 11.07.2009

    Производство металлических пен из расплавов металлов. Свойства пеноалюминия и пеноникеля. Применение металлических пен в машиностроении, космических технологиях, строительстве и медицине. Их использование для уменьшения концентрации нежелательных ионов.

Аморфные металлы характеризуются фазовой однородностью, их атомная структура аналогична атомной структуре переохлаждённых расплавов .

История

В 1990-х годах были открыты сплавы, которые переходили в аморфное состояние уже при скоростях охлаждения около 1°C/с. Это сделало возможным изготовление образцов с размерами порядка нескольких миллиметров.

Классификация

Аморфные сплавы подразделяются на 2 основных типа: металл-металлоид и металл-металл.

При аморфизации методом закалки из жидкого состояния могут быть получены сплавы, содержащие следующие элементы:

  • Для типа металл-металлоид: B, C, Si, Al, P, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Ge, As, Zr, Nb, Mo, Rh, Pd, Ag, Sn, Te, Hf, Ta, W, Ir, Pt, Au, Tl, La.
  • Для типа металл-металл: Be, Mg, Al, Ca, Ti, V, Fe, Co, Ni, Cu, Zn, Ga, Sr, Y, Zr, Nb, Rh, Pd, Ag, Sb, Hf, Ta, Re, Ir, Pt, Au, Pb, La, Ce, Pr, Nd, Sm, Eu, Gd, Th, Dy, Ho, Er, Lu, Th, U.

Свойства

По некоторым свойствам ряд аморфных металлов значительно отличаются от кристаллических того же состава. В частности, некоторые из них отличаются высокой прочностью и вязкостью , коррозионной стойкостью , высокой магнитной проницаемостью .

Механические свойства

Ряд металлических стёкол отличается очень высокой прочностью и твёрдостью . В аморфных сплавах на основе элементов подгруппы железа (Fe, Co, Ni) твёрдость HV может превышать 1000 ГН/м 2 , прочность - 4 ГН/м 2 . Вместе с этим металлические стёкла обладают очень высокой вязкостью разрушения: например, энергия разрыва Fe 80 P 13 C 7 составляет 110 кДж/м 2 , тогда как для стали X-200 значение этого параметра 17 кДж/м 2 .

Электрические свойства

Сопротивление аморфных металлов составляет, как правило, около 100-300 мкОм·см, что значительно выше сопротивления кристаллических металлов. Кроме того, сопротивление разных металлических стёкол в определённых температурных диапазонах характеризуется слабой зависимостью от температуры, а иногда даже убывает с увеличением температуры. При анализе особенностей сопротивления аморфных металлов выделяют 3 группы:

  • простой металл - простой металл
  • переходный металл - металлоид
  • переходный металл - переходный металл.

Металлические стёкла группы простой металл - простой металл отличаются низким удельным сопротивлением (менее 100 мкОм·см). С ростом температуры сопротивление разных материалов данной группы может как возрастать, так и убывать.

Сопротивление материалов группы переходный металл - металлоид лежит в диапазоне 100-200 мкОм·см. Температурный коэффициент сопротивления поначалу положительный, а когда сопротивление достигает ~150 мкОм·см, становится отрицательным. Минимальное значение сопротивления при температурах 10-20 К.

Сопротивление материалов группы переходный металл - переходный металл превышает 200 мкОм·см. При этом с увеличением температуры сопротивление уменьшается.

Некоторые аморфные сплавы проявляют свойство сверхпроводимости , сохраняя при этом хорошую пластичность.

Получение

Существует множество способов получения металлических стёкол.

  1. Осаждение газообразного металла
    • Вакуумное напыление
    • Распыление
    • Химические реакции в газовой фазе
  2. Затвердевание жидкого металла
    • Закалка из жидкого состояния
  3. Нарушение кристаллической структуры твёрдого металла
    • Облучение частицами
    • Воздействие ударной волной
    • Ионная имплантация
  4. Электролитическое осаждение из растворов

Закалка из жидкого состояния

Закалка из жидкого состояния является основным способом получения металлических стёкол. Этот метод заключается в сверхбыстром охлаждении расплава, в результате которого он переходит в твёрдое состояние, избежав кристаллизации - структура материала остаётся практически такой же, как в жидком состоянии. Он включает в себя несколько методов, которые позволяют получать аморфные металлы в формах порошка, тонкой проволоки, тонкой ленты, пластинок. Также были разработаны сплавы с малой критической скоростью охлаждения, что позволило создавать объёмные металлические стёкла.

Для получения пластинок массой до нескольких сотен миллиграмм, капля расплава с большой скоростью выстреливается на охлаждаемую медную плиту, скорость охлаждения при этом достигает 10 9 °C/с. Для получения тонких лент шириной от десятых долей до десятков миллиметров расплав выдавливается на быстро вращающуюся охлаждающую поверхность. Для получения проволок толщиной от единиц до сотен микрон применяются разные методы. В первом расплав протягивается в трубке через охлаждающий водный раствор, скорость охлаждения при этом составляет 10 4 -10 5 °C/с. Во втором методе струя расплава попадает в охлаждающую жидкость, которая находится на внутренней стороне вращающегося барабана, где удерживается за счёт центробежной силы.

Применение

Несмотря на хорошие механические свойства, металлические стёкла не используются в качестве ответственных деталей конструкций по причине их высокой стоимости и технологических сложностей. Перспективным направлением является применение коррозионностойких аморфных сплавов в различных отраслях. В оборонной промышленности при производстве защитных бронированных ограждений используются прослойки из аморфных сплавов на основе алюминия для погашения энергии пробивающего снаряда за счет высокой вязкости разрушения таких прослоек.

Благодаря своим магнитным свойствам аморфные металлы используются при производстве магнитных экранов, считывающих головок аудио- и видеомагнитофонов, устройств записи и хранения информации в компьютерной технике, трансформаторов и других устройств.

Низкая зависимость сопротивления некоторых аморфных металлов от температуры позволяет использовать их в качестве эталонных резисторов.

См. также

Напишите отзыв о статье "Аморфные металлы"

Примечания

Литература

  • Yoshizawa Y., Oguma S., Yamauchi K. New Fe-based magnetic alloys composed of ultrafine grain structure // J. Appl. Phys. 1988. М. 64, No 10.
  • Herzer G. Nanocrystalline soft magnetic alloys // Handbook of magnetic materials. V. 10. Edited by K. H. J. Bushow. Amsterdam: Elsevier Science. 1997
  • К. Судзуки, Х. Фудзимори, К. Хасимото. Аморфные металлы. - М .: Металлургия, 1987. - 328 с. - 3300 экз.
  • Юрий Стародубцев. Магнитные свойства аморфных и нанокристаллических сплавов. Екатеринбург: Издательство Уральского университета, 2002.
  • Юрий Стародубцев. , М. Техносфера, 2011.

Отрывок, характеризующий Аморфные металлы

«Завтра, очень может быть, пошлют с каким нибудь приказанием к государю, – подумал он. – Слава Богу».

Крики и огни в неприятельской армии происходили оттого, что в то время, как по войскам читали приказ Наполеона, сам император верхом объезжал свои бивуаки. Солдаты, увидав императора, зажигали пуки соломы и с криками: vive l"empereur! бежали за ним. Приказ Наполеона был следующий:
«Солдаты! Русская армия выходит против вас, чтобы отмстить за австрийскую, ульмскую армию. Это те же баталионы, которые вы разбили при Голлабрунне и которые вы с тех пор преследовали постоянно до этого места. Позиции, которые мы занимаем, – могущественны, и пока они будут итти, чтоб обойти меня справа, они выставят мне фланг! Солдаты! Я сам буду руководить вашими баталионами. Я буду держаться далеко от огня, если вы, с вашей обычной храбростью, внесете в ряды неприятельские беспорядок и смятение; но если победа будет хоть одну минуту сомнительна, вы увидите вашего императора, подвергающегося первым ударам неприятеля, потому что не может быть колебания в победе, особенно в тот день, в который идет речь о чести французской пехоты, которая так необходима для чести своей нации.
Под предлогом увода раненых не расстроивать ряда! Каждый да будет вполне проникнут мыслию, что надо победить этих наемников Англии, воодушевленных такою ненавистью против нашей нации. Эта победа окончит наш поход, и мы можем возвратиться на зимние квартиры, где застанут нас новые французские войска, которые формируются во Франции; и тогда мир, который я заключу, будет достоин моего народа, вас и меня.
Наполеон».

В 5 часов утра еще было совсем темно. Войска центра, резервов и правый фланг Багратиона стояли еще неподвижно; но на левом фланге колонны пехоты, кавалерии и артиллерии, долженствовавшие первые спуститься с высот, для того чтобы атаковать французский правый фланг и отбросить его, по диспозиции, в Богемские горы, уже зашевелились и начали подниматься с своих ночлегов. Дым от костров, в которые бросали всё лишнее, ел глаза. Было холодно и темно. Офицеры торопливо пили чай и завтракали, солдаты пережевывали сухари, отбивали ногами дробь, согреваясь, и стекались против огней, бросая в дрова остатки балаганов, стулья, столы, колеса, кадушки, всё лишнее, что нельзя было увезти с собою. Австрийские колонновожатые сновали между русскими войсками и служили предвестниками выступления. Как только показывался австрийский офицер около стоянки полкового командира, полк начинал шевелиться: солдаты сбегались от костров, прятали в голенища трубочки, мешочки в повозки, разбирали ружья и строились. Офицеры застегивались, надевали шпаги и ранцы и, покрикивая, обходили ряды; обозные и денщики запрягали, укладывали и увязывали повозки. Адъютанты, батальонные и полковые командиры садились верхами, крестились, отдавали последние приказания, наставления и поручения остающимся обозным, и звучал однообразный топот тысячей ног. Колонны двигались, не зная куда и не видя от окружавших людей, от дыма и от усиливающегося тумана ни той местности, из которой они выходили, ни той, в которую они вступали.
Солдат в движении так же окружен, ограничен и влеком своим полком, как моряк кораблем, на котором он находится. Как бы далеко он ни прошел, в какие бы странные, неведомые и опасные широты ни вступил он, вокруг него – как для моряка всегда и везде те же палубы, мачты, канаты своего корабля – всегда и везде те же товарищи, те же ряды, тот же фельдфебель Иван Митрич, та же ротная собака Жучка, то же начальство. Солдат редко желает знать те широты, в которых находится весь корабль его; но в день сражения, Бог знает как и откуда, в нравственном мире войска слышится одна для всех строгая нота, которая звучит приближением чего то решительного и торжественного и вызывает их на несвойственное им любопытство. Солдаты в дни сражений возбужденно стараются выйти из интересов своего полка, прислушиваются, приглядываются и жадно расспрашивают о том, что делается вокруг них.
Туман стал так силен, что, несмотря на то, что рассветало, не видно было в десяти шагах перед собою. Кусты казались громадными деревьями, ровные места – обрывами и скатами. Везде, со всех сторон, можно было столкнуться с невидимым в десяти шагах неприятелем. Но долго шли колонны всё в том же тумане, спускаясь и поднимаясь на горы, минуя сады и ограды, по новой, непонятной местности, нигде не сталкиваясь с неприятелем. Напротив того, то впереди, то сзади, со всех сторон, солдаты узнавали, что идут по тому же направлению наши русские колонны. Каждому солдату приятно становилось на душе оттого, что он знал, что туда же, куда он идет, то есть неизвестно куда, идет еще много, много наших.
– Ишь ты, и курские прошли, – говорили в рядах.
– Страсть, братец ты мой, что войски нашей собралось! Вечор посмотрел, как огни разложили, конца краю не видать. Москва, – одно слово!
Хотя никто из колонных начальников не подъезжал к рядам и не говорил с солдатами (колонные начальники, как мы видели на военном совете, были не в духе и недовольны предпринимаемым делом и потому только исполняли приказания и не заботились о том, чтобы повеселить солдат), несмотря на то, солдаты шли весело, как и всегда, идя в дело, в особенности в наступательное. Но, пройдя около часу всё в густом тумане, большая часть войска должна была остановиться, и по рядам пронеслось неприятное сознание совершающегося беспорядка и бестолковщины. Каким образом передается это сознание, – весьма трудно определить; но несомненно то, что оно передается необыкновенно верно и быстро разливается, незаметно и неудержимо, как вода по лощине. Ежели бы русское войско было одно, без союзников, то, может быть, еще прошло бы много времени, пока это сознание беспорядка сделалось бы общею уверенностью; но теперь, с особенным удовольствием и естественностью относя причину беспорядков к бестолковым немцам, все убедились в том, что происходит вредная путаница, которую наделали колбасники.
– Что стали то? Аль загородили? Или уж на француза наткнулись?
– Нет не слыхать. А то палить бы стал.
– То то торопили выступать, а выступили – стали без толку посереди поля, – всё немцы проклятые путают. Эки черти бестолковые!
– То то я бы их и пустил наперед. А то, небось, позади жмутся. Вот и стой теперь не емши.
– Да что, скоро ли там? Кавалерия, говорят, дорогу загородила, – говорил офицер.
– Эх, немцы проклятые, своей земли не знают, – говорил другой.
– Вы какой дивизии? – кричал, подъезжая, адъютант.
– Осьмнадцатой.
– Так зачем же вы здесь? вам давно бы впереди должно быть, теперь до вечера не пройдете.
– Вот распоряжения то дурацкие; сами не знают, что делают, – говорил офицер и отъезжал.
Потом проезжал генерал и сердито не по русски кричал что то.
– Тафа лафа, а что бормочет, ничего не разберешь, – говорил солдат, передразнивая отъехавшего генерала. – Расстрелял бы я их, подлецов!
– В девятом часу велено на месте быть, а мы и половины не прошли. Вот так распоряжения! – повторялось с разных сторон.
И чувство энергии, с которым выступали в дело войска, начало обращаться в досаду и злобу на бестолковые распоряжения и на немцев.

Рекомендуем почитать

Наверх