Включить-выключить. Схемы управления питанием

Приборы 02.02.2024
Приборы

Наконец-то нашлось время для написания статьи про коммутаторы. В статье

я уже упоминал о том, как можно использовать сервопривод, оставшийся без зубчатых колес и электромотора, но сохранившим работоспособность контроллера. Такой сервопривод не всегда рентабельно ремонтировать, а вот на «поделки» он вполне сгодится.

И если вариантов простых регуляторов из сервопривода раз-два и обчелся, то всевозможных коммутаторов (включателей, выключателей, переключателей) можно сотворить не один и не два.

Забегая вперед, оговорюсь, что в настоящее время можно купить выключатели, управляемые дистанционно, например эти:

Это готовые изделия, позволяющие «не ломая голову что_и_как» установить их на модель и пользоваться.
И это огромный плюс! Но есть и минусы:
- практически все они переключаются при фиксированном задании %РРМ, как правило -100%...+100% без возможности установки произвольного уровня переключения;
- узкий функционал, а приспособить готовое изделие под свои задачи не всегда представляется возможным;
- долгое ожидание доставки и дополнительно ее оплата;
- как правило, практически нет возможности отремонтировать устройство, а покупка нового коммутатора – опять недели ожидания.

Теперь о «самоделках».
В первую очередь, отмечу немаленький минус в том, что для сборки требуется умение работать с паяльником и как минимум, начальные познания в электронике. Так же «самоделки» явно проигрывают в весе и размере указанным выше выключателям. Однако, используя соответствующие комплектующие и имея навыки компоновки радиоэлектронных устройств, можно все «уложить» в размеры спичечного коробка.

Плюсы же вижу в том, что:
- сервопривод с «убитой» механикой еще послужит, хоть и в другом качестве;
- возможность сконструировать коммутатор именно под свои цели и задачи;
- возможность установки произвольной точки включения/выключения, что дает возможность при аппаратном микшировании с любым каналом производить какие-либо переключения, например, включать на ЛА посадочные огни при малом уровне газа;
- возможность создать элементы автоматизации управления, без применения специализированных контроллеров;
- не нужно ждать неделями посылку и платить за доставку;
- в составе коммутаторов используются широкодоступные компоненты, которые есть в магазинах радиодеталей Вашего города;
- ремонтопригодность устройства;

Рассматриваемые в статье устройства рассчитаны на начинающего радиолюбителя…. хм…. электронщика…,
не представляют сложности в изготовлении и не требуют знания навыков программирования микропроцессорных устройств - достаточно просто отсчитать нужные ножки микросхемы и все спаять в соответствии с обозначениями выводов. Собранные из широкодоступных исправных деталей, коммутаторы начинают работать сразу, не требуя настройки режимов работы. Единственно - необходимо установить желаемый порог переключения.
В статье приведен далеко не полный перечень вариантов реализации коммутаторов с различным функционалом.

Все коммутаторы, выполненные на базе контроллера сервопривода, сохраняют свое состояние после пропадания сигнала управления (например, отключение пульта РУ), для изменения состояния коммутатора в этом случае рекомендуется воспользоваться (в случае, если приемник РУ не имеет встроенной функции FS) устройством, аналогичным этим:

В описанных в статье коммутаторах используется контроллер сервопривода SG90. Стоимость нового сервопривода составляет от семидесяти рублей.
О том, как извлечь контроллер из корпуса сервопривода, краткое описание подключения, порядок установки нейтрали контроллера и т.п. можно посмотреть по ссылке, указанной в начале этой статьи (статья «Сервопривод. Жизнь после смерти»).
Все коммутаторы на базе контроллера сервопривода могут быть аппаратно (через Y-кабель, например) смикшированы с любым каналом РУ.
Нумерация выходов источника управляющего сигнала и входов контроллера сервопривода на схемах приведена условно, однако соответствует порядку расположения в соединительном кабеле.
Нумерация выходов контроллера на схемах приведена условно, выходы равнозначны, но работают инверсно по отношению друг к другу. Выбор конкретного выхода для использования в схеме определяется решаемыми задачами. При необходимости нужно просто поменять местами выходы контроллера либо полярность подключения крайних выводов датчика положения на плате контроллера.

На схемах маркировкой «А1» и «А2» обозначены
А1 - приемник РУ (либо сервотестер) , у которого на схеме показаны выходы одного произвольного канала.
А2 – контроллер сервопривода, из которого предстоит сделать тот или иной коммутатор.
Стоимость этих узлов не приводится, так как подразумевается, что они уже имеются.
Номиналы и тип комплектующих указаны на схемах и в описаниях.
Средняя стоимость компонентов в приведенных схемах примерно такова:
Диод КД522 – 5 руб/шт
Опторон транзисторный - 20руб/шт
Транзистор КТ315Г – 17руб/шт
Транзистор «мосфет» 55А/65В – 85руб/шт
Транзистор «мосфет» 0.4А/400В – 40руб/шт
Резистор постоянный, 0,25Вт – 5руб/шт
Резистор переменный – 38руб/шт
Реле – 63руб/шт
Стоимость в магазинах нашего региона.

1. Релейный коммутатор.

На рис. 1 представлен простой релейный коммутатор, состоящий из контроллера сервопривода, к выходу которого вместо микроэлектродвигателя подключено электромагнитное реле. Реле К1 включено через диод VD1.

Полярность включения диода определяет участок диапазона регулирования %РРМ слева и справа от «нейтрали», на котором реле будет включено (см. диаграмму 1).


Принцип работы:

При изменении задания с пульта РУ происходит увеличение напряжения (ШИМ-регулирование на выходе контроллера) на обмотке реле К1. При достижении напряжения срабатывания реле, последнее включается и своими контактами коммутирует электрическую цепь исполнительного устройства. Момент включения реле настраивается датчиком положения контроллера сервопривода при заданном уровне %РРМ. При уменьшении напряжения на обмотке реле и достижении напряжения возврата реле отключается.

Нейтрального положения нет.

Реле следует выбирать с рабочим напряжением (напряжением срабатывания) 3,4-4,5В и рабочим током катушки до 50мА.

Такой коммутатор можно использовать для дистанционного включения/отключения различных устройств (световые приборы модели, системы зажигания двигателей и т.п.). Контакты реле могут быть задействованы так же в различных схемах автоматики управления.

Подключив к выходу контроллера сервопривода два реле параллельно через включенные встречно диоды (рис. 2) можно получить релейный коммутатор с нейтральным положением электрической цепи.
Принцип работы:
При изменении задания с пульта РУ вправо или влево от «нейтрали» происходит увеличение напряжения (ШИМ-регулирование на выходе контроллера) на обмотке соответствующего реле в зависимости от направления протекания тока на выходе контроллера. При достижении напряжения срабатывания реле (в соответствии «с направлением» диода), последнее включается и своими контактами коммутирует электрическую цепь исполнительного устройства.

При уменьшении напряжения на обмотке реле до напряжения возврата реле отключается. В положение «нейтраль» управляющего органа на пульте РУ оба реле отключаются (см. диаграмму 2).

Нейтральное положение есть.

Гальваническая развязка с коммутируемой электрической цепью обеспечивается применением контактной группы реле, электрически не связанной со схемой управления.

Такой коммутатор, можно использовать, например, для изменения направления вращения электрических двигателей небольшой мощности с возможностью их останова. Для коммутации большой мощности придется устанавливать более мощные реле-повторители.

Управление двигателем постоянного тока:

Управление двигателем переменного тока (схема с ESC не испытывалась, поведение регулятора при таком переключении неизвестно!!! Однако, для самогО трехфазного двигателя схема рабочая):

Учитывая, что реле К1 и К2 в нормальном режиме никогда не могут быть включены одновременно, дополнительных блокировок не требуется.

Недостаток схемы кроется в ШИМ-регулировании выходного напряжения контроллера сервопривода. Из-за импульсного характера выходного напряжения может наблюдаться дребезг реле. Наличие дребезга зависит от времени возврата реле – «успеет» оно вернуться в исходное состояние или нет во время паузы между импульсами ШИМ. Ситуацию может несколько исправить включение электролитических конденсаторов параллельно катушкам реле, однако следует помнить, что увеличение емкости этих конденсаторов увеличивает время отключения реле после подачи команды на отключения.

Стоит отметить, что коммутаторы с реле, подключенным непосредственно к выходам контроллера сервопривода, к сожалению, критичны к выбору реле по электрическим характеристикам – нужных реле может просто не оказаться в продаже.

Значительно расширяет возможности выбора рабочих напряжений и токов обмоток реле применение внешнего ключа для управления реле. Внешний ключ, как правило, выполнен на биполярном или полевом транзисторе (для больших значений рабочего тока обмотки реле рекомендуется применять так называемые «мосфеты»). Выбор ключевого элемента производится исходя из параметров его нагрузки, т.е. электрических характеристик реле.

Здесь уже практически нет ограничений в выборе реле по сравнению с коммутаторами, изображенными на рис.1,2. На рис. 5 представлена схема такого коммутатора.
Принцип работы:
При отклонении управляющего органа канала РУ (стик на пульте РУ, регулятор сервотестера) от «нейтрали», предположим влево, на выводе 4 модуля А2 появляется положительное напряжение, которое через резистор R1 поступает на базу транзистора VT1, в результате чего последний открывается и подает напряжение на обмотку реле К1, которое своими контактами К1.1 коммутирует электрические цепи исполнительного механизма. При возвращении управляющего органа канала РУ в «нейтраль», либо в данном случае - правее ее, транзистор VT1 закрывается, обесточивая обмотку реле (см. диаграмму 3).

Резистор R2 служит для надежного закрывания транзистора при отсутствии управляющего напряжения.
Конденсатор С1 (емкостью 10…50мкф) служит для сглаживания пульсаций напряжения на входе ключа (а как мы помним там ШИМ-регулирование). Диод VD1 служит для защиты транзистора от пробоя токами самоиндукции реле и выбирается исходя из электрических параметров реле: минимум трехкратный запас по напряжению и двукратный запас по току.

Момент включения реле настраивается датчиком положения контроллера сервопривода при заданном уровне %РРМ.

При использовании вывода 5 контроллера алгоритм работы выключателя изменится на противоположный.
К выводу 5 контроллера может быть подключен аналогичный каскад (К2). Оба реле будут работать инверсно по отношению друг к другу.

Нейтрального положения нет.
Возможность установки произвольного порога включения во всем диапазоне регулирования %РРМ есть.
Гальваническая развязка с коммутируемой электрической цепью обеспечивается применением контактной группы реле, электрически не связанной со схемой управления.

При выборе реле следует выбирать рабочее напряжение обмотки на 10-20% ниже напряжения питания, что обусловлено падением напряжения на переходе биполярного транзистора. Ток срабатывания реле не более 70мА.

Для более мощных реле можно применить ключ, реализованный на полевом транзисторе – мосфете (рис. 6).
Диод следует выбирать в соответствии с характеристиками обмотки реле.


Напряжение питания может отличаться от приведенного на схеме в зависимости от электрических характеристик реле.

К сожалению видео снимать нечем, попробовал фотоаппаратом - качество вообще никакое. Все же решил один ролик вставить - комплектуху там не видно, но можно понять как устанавливать порог включения.

Еще один вариант релейного коммутатора – релейный переключатель с нейтральным положением (рис. 7).
Для сопряжения контроллера сервопривода с силовыми ключами используются транзисторные оптроны (рис. 7а).




Принцип работы:
При изменении задания с пульта РУ вправо или влево от «нейтрали» зажигается соответствующий светодиод внутри оптопары, который воздействует на оптотранзистор в этой же оптопаре исполнительной части коммутатора (рис. 7б).
При этом, при изменении задания %РРМ, скажем влево от «нейтрали», на выводе 5 относительно вывода 4 контроллера устанавливается отрицательное напряжение, которое подается через диод VD2 на светодиод оптрона DA2.1, вызывая его свечение. Аналогично, при изменении задания %РРМ в противоположную от «нейтрали» сторону (вправо), на выводе 5 относительно вывода 4 контроллера устанавливается положительное напряжение, которое подается через диод VD1 на светодиод оптрона DA1.1, вызывая его свечение.

В «нейтрали» напряжение на выводе 5 относительно вывода 4 контроллера отсутствует и оба светодиода погашены.
Диоды VD1 и VD2 защищают светодиоды оптопары от обратного напряжения. Резистор R1 ограничивает ток через светодиоды. Его сопротивление подбирается исходя из допустимого тока через светодиод оптопары в соответс вии с рекомендациями ее производителя.

При освещении транзистора оптопары DA1 открывается транзистор DA1.2 и подает напряжение питания на вход транзисторного ключа VT1, открывая его. Схема и работа ключа описана выше и не вижу смысла дублировать текст.
Аналогично работает оптопара DA2. В нейтральном положении, когда ни один светодиод оптопар не горит, транзисторы DA1.2 и DA2.2 закрыты, транзисторы VT1 и VT2 так же закрыты, а оба реле – отключены.

Момент переключения реле настраивается датчиком положения контроллера сервопривода при заданном уровне %РРМ – в данном случае необходимо установить «нейтраль», т.е. момент, когда оба реле отключены.

Алгоритм работы переключателя аналогичен указанному на диаграмме 2, за исключением того, что в данном переключателе практически отсутствует зона нечувствительности коммутатора.


Возможность установки произвольного порога переключения во всем диапазоне регулирования %РРМ есть.
Гальваническая развязка с коммутируемой электрической цепью обеспечивается применением контактной группы реле, электрически не связанной со схемой управления, а при необходимости и отдельным питанием исполнительной части коммутатора.

Также, вместо реле можно включить лампочку накаливания, светодиод, электродвигатель постоянного тока, электромагнит и т.п. Однако следует помнить, что электромагнитное реле является пороговым элементом, т.е. включается и выключается при определенном напряжении на его обмотке. Поэтому при работе коммутатора мы видим четкое включение/выключение реле. Световые приборы же не имеют четкого порога включения и будут изменять яркость свечения по мере изменения уровня задания %РРМ с пульта РУ – работа регулятора описана в материале по ссылке в начале этой статьи (статья «Сервопривод. Жизнь после смерти.»). Тоже самое с оборотами электродвигателя. Кроме того будет заметно мерцание световых приборов, особенно светодиодов. Для питания же электронных устройств, их включение вместо реле не подходит вообще, так как не будет обеспечена стабильность напряжения питания и уровень пульсаций питающего напряжения.

2. Электронный коммутатор.
Электронные коммутаторы сложнее в схемотехнике (но не в изготовлении), зато позволяют реализовать больший функционал, гибкость решений и большую нагрузочную способность по сравнению с контактной группой малогабаритных реле. При этом зачастую выигрывают в весе по сравнению с релейными коммутаторами при равной коммутируемой нагрузке.

Управляющая часть для электронного коммутатора остается без изменений, как указано на рисунке 7а.
Ниже будут рассмотрены различные варианты исполнительной части электронного коммутатора.

Как уже отмечалось, простой релейный коммутатор (рис. 1,2) имеет недостаток, выражающийся в дребезге реле, который в принципе можно минимизировать сглаживанием пульсаций с помощью электролитического конденсатора (рис. 5,7). Так же, к недостаткам можно отнести сравнительно небольшой коммутируемый ток малогабаритных реле. Увеличение же этого тока ведет к неизбежному увеличению габаритов реле в целом.

В тоже время, современные полевые транзисторы большой мощности (т.н. «мосфеты»), обладая высоким входным сопротивлением, малыми токами управления и ничтожно малым сопротивлением открытого перехода, позволяют коммутировать большие токи при небольших размерах, а средняя цена одного «мосфета» на 50А-70А соизмерима с ценой реле, коммутирующего токи всего до 10А (около 100 руб.).

Электронные коммутаторы позволяют обеспечить:
- отсутствие дребезга контактов, бесшумное замыкание
- отсутствие чувствительности к ударным нагрузкам, вибрации и положению монтажа
- отсутствие механизмов электромагнитного износа
- неограниченное число замыканий контактов
- длительный срок службы и надежность
- зачастую меньшие габариты и вес по сравнению с аналогичным реле.

Применение в электронном коммутаторе цифровых логических микросхем позволяет создавать простые и недорогие коммутаторы с надежной фиксацией положения и возможностью автоматизации отдельных функций.

Фиксация положения выключателя основана на применении триггера-«защелки». Если коротко, то триггер-«защелка» представляет собой RS-триггер – устройство, которое изменяет состояние своих выходов (а их в данном случае два: прямой и инверсный) при подаче напряжения логического уровня (лог. 0 или лог.1) на соответствующий управляющий вход. У RS-триггера в нашем случае два входа – «R» и «S»:
Вход «S» = «Set» = «Установка»
Вход «R» = «Reset» = «Сброс»

Рассмотрим коротко схему работы триггера (рис. 8).


В нормальном режиме на входы «R» и «S» через резисторы R1 и R2 соответственно подается напряжение питания («лог. 1»). На схеме видно, что обозначение обоих входов имеет черту над буквой. Это означает, что данный вход управляется инверсно, т.е., чтобы активировать вход, на него нужно подать лог. 0.

Подадим на вход «S» напряжение лог. 0 посредством кратковременного нажатия кнопки SB1, при этом на выходе «Q» установится уровень лог. 1, а на выходе Qинв («с черточкой») установится уровень лог. 0. Теперь сколько угодно долго можно жать на кнопку SB1, сколько угодно импульсов подавать с ее помощью – состояние триггера не изменится до тех пор, пока не будет подано с помощью кнопки SB2 напряжение лог. 0 на вход «R». После подачи напряжения лог. 0 на вход «R» триггер сбрасывается, при этом состояние обоих его выходов меняются на противоположное.
Таким образом, в отличии от релейного коммутатора (рис. 1,2,5) не имеет значения сколько импульсов подано на вход - один или несколько – сразу же после первого импульса на входе триггера, его выходы зафиксируют и не изменят свое состояние до прихода управляющего импульса на вход сброса, а значит и напряжение на выходе коммутатора не будет меняться в зависимости от скважности ШИМ на входе и может быть применено для питания практически любого устройства.

Вариант исполнения такого коммутатора представлен на рисунке 9.
RS-триггер собран на двух элементах (всего в микросхеме их четыре и два других могут быть задействованы для реализации второго аналогичного коммутатора со своей управляющей частью) 2И-НЕ микросхемы DD1. Триггером управляет уже знакомая нам по рис. 7а оптопара, описание ее «светящейся» части смотрите выше – мы уже условились рассматривать далее только исполнительную часть коммутаторов. Оптотранзистор в составе соответствующей оптопары DA1(DA2) открываясь, подает напряжение лог. О на соответствующий вход триггера, устанавливая или сбрасывая его. При этом на выходах триггера устанавливаются логические уровни так, как это описано в пояснении принципа работы RS-триггера (рис. 8).
Микросхема DD1 и ее входные цепи питаются от стабилизатора DA3 напряжением 9В, что дает возможность использовать коммутатор в широком диапазоне питающих напряжений.


При использовании выхода 2 триггера DD1.1-DD1.2 алгоритм работы выключателя изменится на противоположный.
К выходу 2 триггера DD1.1-DD1.2 может быть подключен аналогичный каскад (VT2) для «Нагрузки 2». Оба ключа будут работать инверсно по отношению друг к другу.

Нейтрального положения нет.
Возможность установки произвольного порога включения во всем диапазоне регулирования %РРМ есть.

Еще пара коммутаторов, которые могут занять место в моделях. Расскажу о них совсем кратко.

Переключатель поворотов модели автомобиля. Исполнительная часть переключателя поворотов реализована на логической микросхеме, содержащей 4 элемента 2ИЛИ-HЕ (рис. 10).
На элементах DD1.1,DD1.2 собран генератор импульсов, на элементах DD1.3,DD1.4 собраны управляемые коммутаторы сигнала указателя поворотов, соответственно правого и левого.
Включением и выключением сигнала поворота управляет контроллер сервопривода с подключенной на выходе оптопарой на каждое направление, рис. 7а.
Контроллер переключателя может быть аппаратно смикширован через Y-разветвитель с каналом управления поворотом колес – «рулем» (если это модель авто).

Момент включения сигнала поворота настраивается датчиком положения контроллера сервопривода при заданном уровне %РРМ – в данном случае необходимо установить «нейтраль», т.е. момент, когда колеса «стоят прямо» и автомобиль движется по ровной траектории, а указатели поворота при этом не мигают.


Алгоритм работы переключателя изображен на диаграмме 4, зона нечувствительности коммутатора практически отсутствует.


Подбором резистора R3 от 100кОм до 1МОм можно изменять частоту мигания указателей поворотов.
Транзисторы VT1 и VT2 могут быть любыми с рабочим напряжением не менее 20В и током не менее 100мА и
могут быть заменены на любые другие биполярные и полевые («мосфеты») транзисторы в зависимости от мощности примененных световых приборов.

Светодиоды VD1-VD4 выбираются исходя из потребностей применительно к размеру и копийности модели.
Резистор R6 рассчитывается с учетом номинального тока через цепочку из двух светодиодов.

Нейтральное положение – есть, строго в «нейтрали».
Возможность установки произвольного порога переключения во всем диапазоне регулирования %РРМ - есть.
Гальваническая развязка с коммутируемой электрической цепью обеспечивается при необходимости отдельным питанием исполнительной части коммутатора.

На авиамодель можно установить переключатель огней – консольных и сигнальных.
Работа переключателя внешне сходна с работой стробоскопа - поочередно один раз вспыхивают две цепочки светодиодов, потом пауза и все повторяется. Применение "мигающей" технологии позволяет включать сверхяркие светодиоды на токе до 70% номинального, обеспечивая при этом компромисс между яркостью свечения и нагревом при работе без радиатора. Коммутатор собран на логических микросхемах 561й серии (рис. 11).


На элементах DD1.1,DD1.2 собран уже известный нам RS-триггер, на элементах DD1.3,DD1.4 – генератор импульсов. На микросхеме DD2 собран переключатель огней – на его выходах последовательно с каждым входным импульсом появляется лог.1. Всего выходов - 10, используются два. Можно и "бегущие огни" сделать)))) Изменяя сопротивление резистора R3 в пределах от 30кОм до 1Мом можно изменять частоту переключения огней, при этом следует помнить, что счетчик DD2 является делителем частоты на 10.

Момент включения коммутатора настраивается датчиком положения контроллера сервопривода при заданном уровне %РРМ.

Нейтрального положения нет.
Возможность установки произвольного порога включения во всем диапазоне регулирования %РРМ есть.
Гальваническая развязка с коммутируемой электрической цепью может быть обеспечена отдельным питанием исполнительной части.

Световые приборы выбираются, исходя из требований к яркости свечения. Силовые ключи VT1 и VT2 подбираются в соответствии с мощностью выбранных световых приборов.

Если дистанционное включение/отключение огней не требуется, то все, что на схеме находится левее элемента DD1.3, можно исключить (включая управляющую часть этого коммутатора), а вывод 9 элемента DD1.3 соединить с выводом 8 этого же элемента (рис. 12). В этом случае схема начинает работать сразу после подачи напряжения питания.


3. Элементы автоматического управления.

Ряд коммутаторов может быть отнесен к элементам автоматического управления. Их великое множество, все их рассматривать нет смысла. Рассмотрим устройство ограничения времени работы – таймер.
Простой таймер с регулируемой выдержкой времени (рис. 13). Такой таймер может, например, быть использован для ограничения времени работы модели, изменения режима работы узлов и механизмов, остановки двигателя и выпуска парашюта летающей модели и т.п.

Таймер выполнен на полевом транзисторе, в данном случае – «мосфет». Указанный на схеме транзистор самый «слабенький» из всех мосфетов, имеющихся в широкой продаже в магазинах радиодеталей, его максимальный ток всего 0.4А. Проблем с мосфетами меньше, а по стоимости (40 руб.) он соизмерим с обычным «полевиком», типа КП103, КП303 и ему подобными (33 руб.).

Итак, работа схемы. Напряжение питания через резистор R1, контакт тумблера SB1 и резистор R4 подается на затвор (вывод G) транзистора VT1, в результате чего реле К1 срабатывает, а его контакт К1.1. размыкается. Одновременно через резистор R1, ограничивающий ток заряда конденсатора С1, напряжение питания подается на конденсатор С1. Конденсатор С1, резисторы R2 и R3 образуют времязадающую цепочку.
После размыкания контакта SB1 конденсатор С1 начинает разряжаться через цепь R2 и R3 (начинается отсчет времени).
Как только напряжение на конденсаторе С1 достигнет порога закрытия транзистора, последний закроется и обесточит реле. В результате реле отключится, его нормально замкнутый контакт вернется в замкнутое состояние и приведет в действие исполнительный механизм.
Диод VD1 служит для защиты транзистора от пробоя токами самоиндукции катушки реле (к слову сказать, практически все мосфеты имеют встроенную такую защиту, и это еще один их плюс, по сравнению с обычными транзисторами).
При указанных на схеме деталях время выдержки составляет от 25сек до 4,5мин.
Изменением емкости конденсатора в ту или иную сторону можно увеличить или уменьшить максимальное время.

Для отмены отсчета времени без срабатывания исполнительного механизма (и повторного отсчета времени сначала) необходимо замкнуть (и разомкнуть) контакт SB1.
Для отмены отсчета времени и досрочного срабатывания исполнительного механизма можно дополнить таймер времени кнопкой SBxx, подключенной через резистор Rxx (100-300 Ом), как показано на рис. 14. При кратковременном замыкании контактов кнопки (при разомкнутом контакте SB1) происходит быстрый разряд конденсатора С1 через резистор Rxx ниже порога удержания транзистора VT1, далее – все как описано выше.


Таймер может быть запущен дистанционно с пульта РУ. Для этого необходимо оснастить таймер управляющей частью, рис. 15, выделена красным прямоугольником. Выключатель SB1 в данном случае не нужен, резистор R1 меняет точку подключения с +12В на вход времязадающей цепи и через него подается сигнал управления. В этом случае, таймер может быть запущен в любое время с пульта.


Градуировка шкалы переменного резистора R3 должна быть выполнена для каждого варианта таймера - релейного и электронного – отдельно.

А теперь несколько практических схем с применением вышеописанного таймера.

Ну, самое очевидное – использование контактов реле для замыкания/размыкания/переключения электрической цепи, состоящей из лампочки и батарейки приводить не буду, ибо это еще в школе на уроках физики пройдено.
Рассмотрим вариант применения данного таймера в релейных и электронных коммутаторах, описанных выше, а также в схемах автоматики, а также в схемах управления бортовой механикой.
Итак, для работы с релейными и электронными коммутаторами, изображенными на рис. 5, 6, 7б и 9, а также с регуляторами, описанными в статье «Сервопривод. Жизнь после смерти.» по ссылке в начале этой статьи и имеющими аналогичную схему управления выходным ключом, необходимо доработать схему таймера для управления с его помощью указанными коммутаторами и регуляторами (рис. 16а, 16б).




По схеме рис. 16а – управление коммутатором разрешено до начала отсчета и во время отсчета времени.
По схеме рис. 16б - управление коммутатором запрещено до начала отсчета и во время отсчета времени.
Таймер подключается к базе (Б) или затвору (G) (см. схемы выше) ключевого транзистора так, как это показано на рис. 17.


Еще один пример (рис. 19) использования данного таймера – установка через заданное время сервоприводов, регулятора оборотов двигателя модели и т.п. в заранее заданное положение с помощью устройств типа FAIL SAFE, например, для коптера/самолета: двигатели - газ в ноль, сервопривод – выброс парашюта, или для подводной лодки: горизонтальные рули – на всплытие, киль – на движение по кругу и т.п.
Таким образом, данное действие будет выполнено либо при потере сигнала с пульта, либо через заданное время.
Правда приготовьтесь бежать к месту приземления ЛА или вплавь добираться до всплывшей субмарины, нарезающей круги на поверхности воды))))

Для этого примера снова доработаем схему таймера для работы с одним или несколькими устройствами FAIL SAFE (рис. 18).


Так же необходимо доработать устройство FS, точнее, выходящий из него соединительный кабель. Для этого надо разорвать провод сигнала РРМ и в разрыв установить резистор сопротивлением 1кОм (рис. 19).


Далее, к кабелю присоединить таймер следующим образом: выходной транзистор VT2…VTn таймера подсоединяется к линии сигнала РРМ (желтый, белый) со стороны устройства FS №1 … FS №n, а так же GND таймера к общему проводу (черный) устройства FS (рис. 19, 20).


При работе устройства необходимо сначала подать питание на таймер, а затем включить питание устройства FS (обычно оно питается от BEC в регуляторе). Это нужно для того, чтобы избежать перехода устройства FS в режим FS во время протекания переходных процессов при включении питания таймера.

Работает устройство следующим образом.
При замкнутом выключателе SB1 транзистор VT1 открыт, а транзисторы VT2…VTn закрыты и не шунтируют линию управляющего сигнала РРМ от приемника РУ до устройства FS. После размыкания SB1 начинается отсчет времени, по окончании которого транзистор VT1 закроется, а транзисторы VT2…VTn откроются и зашунтируют линию управляющего сигнала РРМ от приемника РУ до каждого устройства FS. Устройства FS, обнаружив пропадание сигнала, выдадут на исполнительные механизмы соответствующее задание.
Аналогично устройство FS отработает, если пропал сигнал от передатчика, при условии, что в приемнике РУ нет встроенной функции FS.
Если в приемнике есть встроенная функция FS, то необходимо настроить соответствующие каналы приемника РУ на такие же действия при пропадании сигнала, что настроены в устройствах FS.

Все вышеприведенные схемы собраны и опробованы на стенде, за исключением схемы переключения обмоток бесколлекторного электродвигателя (рис. 4). Указанные на схемах детали могут быть заменены на аналогичные по характеристикам, имеющиеся в продаже в магазинах радиодеталей Вашего города.

Ну, и напоследок, вариант автоматизации пуска модели баллистической ракеты шахтного базирования по модели вероятного противника))). Схема приведена только как пример, поэтому номиналы деталей не указаны. Схема не собиралась и не опробовалась. Работоспособность схемы выверена путем анализа алгоритма работы схемы автоматики. Схема достаточно простая, содержит минимум общедоступных деталей и не требует программирования контроллеров (рис. 21).


Контакты и датчики:
S1 – геркон, нормально размокнут, установлен в шахте. Магнит установлен в модели ракеты.
S2- геркон, нормально размокнут, установлен в люке шахты.
S3 - геркон, нормально размокнут, установлен в люке шахты.
К1.1 – реле, нормально замкнут
К1.2 – реле, нормально замкнут
К1.3 – реле, нормально разомкнут
К2.1 – реле, нормально разомкнут
К2.2 – реле, нормально разомкнут

Схема приведена для следующих условий:
- выходной люк шахты закрыт;
- модель баллистической ракеты установлена в шахте;
- состояние датчиков и реле показано на схеме при включенном электропитании;
- команда на открытие люка, пуска модели ракеты и закрытия люка шахты осуществляется по одному каналу управления РУ с использованием приведенных в настоящей статье технических решений в полуавтоматическом режиме и на момент начала алгоритма отсутствует.

Алгоритм работы схемы автоматики.

При установленной в шахте модели ракеты геркон S1 замкнут, подавая напряжение лог.1 на нижний по схеме вход DD1.1, одновременно через этот же геркон подается напряжение питания на вход таймера, удерживая его в исходном состоянии. Через геркон S3 на вход таймера также подается напряжение питания, удерживая таймер в исходном состоянии.

При подаче команды «Пуск» на верхнем по схеме выводе DD1.1 появляется напряжение лог.1, при этом на выходе DD1.2 формируется команда «Открыть люк», в результате которой реле К2 срабатывает и контактами К2.1 и К2.2 подключает электродвигатель привода люка к источнику электропитания – люк открывается. При достижении люком открытого положения магнит, установленный на люке, приближается к геркону S2 и замыкает его. При этом напряжение лог. 1 подается на базу транзистора VT1 (сигнал «Люк открыт»), который блокирует команду «Открыть люк» и отключает реле К2. Одновременно сигнал «Люк открыт» поступает на нижний по схеме вход DD1.3, на верхнем по схеме входе которого уже присутствует команда с пульта РУ на запуск. Таким образом, на выходе DD1.4 формируется команда «Запуск двигателя», которая посредством ключа VT2 включает …хм…. запал твердотопливного двигателя ракеты?
После удачного пуска, модель ракеты уносит с собой магнит, в результате чего геркон S1 размыкается, запрещая повторное открытие люка и повторную процедуру запуска. Также при открытом люке разомкнут геркон S3, при этом на входе таймера отсутствует напряжение, следовательно, начат отсчет времени. Через 10 секунд реле К1 отпадет и своими контактами К1.1 и К1.2 подключит к источнику питания в обратном направлении электродвигатель привода люка, одновременно разомкнется контакт К1.3, заблокировав работу реле К2.
При достижении люком закрытого положения магнит, установленный на люке, приближается к геркону S3 и замыкает его, подавая на вход таймера напряжение питания – реле К1 срабатывает и отключает двигатель.
Схема возвращается в исходное состояние, однако пока не будет замкнут геркон S1 «Ракета в шахте», никакие пусковые операции выполняться не будут.
Не проработан вопрос нештатной ситуации и загрузки модели ракеты в шахту. Кому интересно – ломайте голову))))

На этом заканчиваю очень краткий обзор того, что можно еще сделать с убитым сервоприводом.
Надеюсь, кому-нибудь пригодится...

Схема электронного выключателя была задумана для дистанционного управления нагрузками на расстоянии. Полное устройство аппарата рассмотрим в другой раз, а в этой статье обсудим простую схему электронного выключателя на основе всеми любимого таймера 555.

Схема состоит из самого таймера, кнопки без фиксации транзистора в качестве усилителя и электромагнитного реле. В моем случае было использовано реле на 220 Вольт с током 10Ампер, такие можно найти в источниках бесперебойного питания.


В качестве силового транзистора можно использовать буквально любые транзисторы средней и большой мощности. В схеме использован биполярный транзистор обратной проводимости (NPN), я же использовал прямой транзистор (PNP), поэтому нужно будет менять полярность подключения транзистора , то есть — если собираетесь применить транзистор прямой проводимости, то плюс питания подается на эмиттер транзистора, при использовании транзисторов обратной проводимости на эмиттер подается минус питания.


Из прямых, можно применить транзисторы серии КТ818, КТ837, КТ816, КТ814 или аналогичные, из обратных — КТ819, КТ805, КТ817, КТ815 и так далее.

Электронный выключатель работает в широком диапазоне питающих напряжений, лично подавал от 6 до 16 Вольт, все работает четко.

Схема активируется при кратковременном нажатии кнопки, в этот момент транзистор моментально открывается включая реле, последнее замыкаясь подключает нагрузку. Выключение нагрузки случается только при повторном нажатии. Таким образом, схема играет роль выключателя с фиксацией, но в отличие от последнего, работает исключительно на электронной основе.


В моем случае вместо кнопки использована оптопара, а замыкается схема при команде с пульта управления. Дело в том, что сигнал на оптопару поступает от радиомодуля, который был взят от китайской машинки на радиоуправлении. Такая система позволяет управлять несколькими нагрузками на расстоянии без особого труда.

Данная схема электронного выключателя всегда показывает хорошие рабочие параметры и работает безотказно — пробуйте и сами убедитесь.


Коридорный выключатель очень хорошо знаком электрикам старшего поколения. Сейчас подобное устройство несколько забыто, поэтому придется вкратце рассказать об алгоритме его действия.

Представьте, что Вы выходите из комнаты в коридор, в котором нет окон. Около двери щелкаете выключателем, и в коридоре загорается свет. Этот выключатель условно назовем первым.

Дойдя до противоположного конца коридора, перед выходом на улицу Вы гасите свет вторым выключателем, расположенным около выходной двери. Если в комнате еще кто-то остался, то он также может при выходе включить свет первым выключателем, и с помощью второго выключить. При заходе в коридор с улицы свет включается вторым выключателем, а уже в комнате выключается первым.

Хотя все устройство в целом называется выключателем, для его изготовления потребуются два переключателя с перекидным контактом. Обычные выключатели здесь не подойдут. Схема такого коридорного выключателя показана на рисунке 1.

Рисунок 1. Коридорный выключатель с двумя переключателями.

Как видно из рисунка схема достаточно проста. Лампочка будет светить в том случае, если оба переключателя S1 и S2 замкнуты на один и тот же провод, или верхний, или нижний, как показано на схеме. В противном случае лампа погашена.

Для управления одним источником света из трех мест, не обязательно одной лампочкой, это может быть несколько светильников под потолком, схема уже другая. Она показана на рисунке 2.

Рисунок 2. Коридорный выключатель с тремя переключателями.

По сравнению с первой схемой, эта схема несколько сложнее. В ней появился новый элемент - переключатель S3, который содержит две группы переключающих контактов. В положении контактов, указанном на схеме, лампа включена, хотя обычно указывается положение, при котором потребитель выключен. Но при таком начертании, легче проследить путь тока через выключатели. Если теперь любой из них перевести в положение противоположное указанному на схеме, то лампа выключится.

Чтобы проследить путь тока при других вариантах положения переключателей, достаточно просто поводить по схеме пальцем и мысленно перевести их во все возможные положения.

Обычно такой способ позволяет разобраться и с более сложными схемами. Поэтому длинного и скучного описания работы схемы здесь не приводится.

Такая схема позволяет управлять освещением из трех мест. Она может найти применение в коридоре, в который выходят две двери. Конечно, можно возразить, что в этом случае проще поставить современный датчик движения, который даже следит за тем, день сейчас или ночь. Поэтому днем освещение включаться не будет. Но в некоторых случаях такая автоматика просто не поможет.

Представьте себе, что такой тройной выключатель установлен в комнате. Одна клавиша расположена у входной двери, другая над письменным столом, а третья около кровати. Ведь автоматика может включить свет, когда вы просто во сне перевернетесь с боку на бок. Можно найти еще немало условий, где необходима именно схема без автоматики. Такие выключатели называют также проходными , а не только коридорными.

Теоретически такой проходной выключатель можно сделать и с большим количеством переключателей, но это значительно усложнит схему, потребуются переключатели все с большим количеством контактных групп. Уже даже всего пять переключателей сделают схему неудобной для монтажа и просто понимания принципов ее работы.

А если такой выключатель потребуется для коридора, в который выходит десять, а то и двадцать комнат? Ситуация достаточно реальная. Таких коридоров достаточно в провинциальных гостиницах, студенческих и заводских общежитиях. Как же быть в этом случае?

Вот тут на помощь придет электроника. Ведь как работает такой проходной выключатель? На одну клавишу нажали - свет включился, и горит до тех пор, пока не нажали на другую. Такой алгоритм работы напоминает работу электронного устройства - триггера. Более подробно о различных триггерах можно почитать в цикле статей « ».

Если просто стоять и нажимать на одну и ту же клавишу, то лампочка будет поочередно включаться и гаснуть. Такой режим похож на работу триггера в счетном режиме - с приходом каждого управляющего импульса состояние триггера меняется на противоположное.

При этом в первую очередь следует обратить внимание на то, что при использовании триггера клавиши не должны иметь фиксации: достаточно просто кнопок, наподобие звонковых. Для подсоединения такой кнопки потребуется всего два провода, причем не очень даже и толстых.

А если параллельно одной кнопке подключить еще одну, то получится проходной выключатель с двумя кнопками. Ничего не меняя в принципиальной схеме, можно подключить пять, десять и более кнопок. Схема с использованием триггера К561ТМ2 показана на рисунке 3.

Рисунок 3. Проходной выключатель на триггере К561ТМ2.

Триггер включен в счетном режиме. Для этого его инверсный выход подключен к входу D. Это стандартное включение, при котором каждый входной импульс по входу C изменяет состояние триггера на противоположное.

Входные импульсы получаются при нажатии кнопок S1…Sn. Цепочка R2C2 предназначена подавления дребезга контактов, и формирования одиночного импульса. При нажатии на кнопку происходит заряд конденсатора C2. При отпускании кнопки конденсатор разряжается через C - вход триггера, формируя входной импульс. Таким образом обеспечивается четкая работа всего переключателя в целом.

Цепочка R1C1, подключенная к входу R триггера обеспечивает сброс при начальном включении питания. Если этого сброса не требуется, то R - вход следует просто подключить к общему проводу питания. Если его оставить просто «в воздухе», то триггер воспримет это как высокий уровень и будет все время находиться в нулевом состоянии. Поскольку RS - входы триггера являются приоритетными, подача импульсов на вход C состояния триггера менять не сможет, вся схема окажется заторможенной, неработоспособной.

К прямому выходу триггера подключается выходной каскад, управляющий нагрузкой. Самый простой и надежный вариант это реле и транзистор, как показано на схеме. Параллельно катушке реле подключен диод D1, назначение которого уберечь выходной транзистор от напряжения самоиндукции при выключении реле Rel1.

Микросхема К561ТМ2 в одном корпусе содержит два триггера, один из которых не используется. Поэтому входные контакты незадействованного триггера следует соединить с общим проводом. Это контакты 8, 9, 10 и 11. Такое подключение предотвратит выход микросхемы из строя под воздействием статического электричества. Для микросхем структуры КМОП такое соединение всегда обязательно. Питающее напряжение +12В следует подать на 14 вывод микросхемы, а 7 вывод соединить с общим проводом питания.

В качестве транзистора VT1 можно применить КТ815Г, диод D1 типа 1N4007. Реле малогабаритное с катушкой на 12В. Рабочий ток контактов выбирается в зависимости от мощности светильника, хотя может быть и любая другая нагрузка. Здесь лучше всего использовать импортные реле типа TIANBO или им подобные.

Источник питания показан на рисунке 4.

Рисунок 4. Источник питания.

Источник питания выполнен по трансформаторной схеме с использованием интегрального стабилизатора 7812, обеспечивающего на выходе постоянное напряжение 12В. В качестве сетевого трансформатора используется трансформатор мощностью не более 5…10 Вт с напряжением вторичной обмотки 14…17В. Диодный мост Br1 можно применить типа КЦ407, либо собрать из диодов 1N4007, которые в настоящее время очень распространены.

Электролитические конденсаторы импортные типа JAMICON или подобные. Их теперь также проще купить, чем детали отечественного производства. Хотя стабилизатор 7812 имеет встроенную защиту от коротких замыканий, но все равно перед включением устройства следует убедиться в правильности монтажа. Это правило забывать не следует никогда.

Источник питания, выполненный по указанной схеме, обеспечивает гальваническую развязку от осветительной сети, что позволяет применять данное устройство в сырых помещениях, таких как погреба и подвалы. Если такого требования не предъявляется, то источник питания можно собрать по бестрансформаторной схеме, подобно той, которая показана на рисунке 5.

Рисунок 5. Бестрансформаторный источник питания.

Такая схема позволяет отказаться от использования трансформатора, что в ряде случаев достаточно удобно и практично. Правда кнопки, да и вся конструкция в целом, будут иметь гальваническую связь с осветительной сетью. Об этом не следует забывать, и соблюдать правила техники безопасности.

Выпрямленное сетевое напряжение через балластный резистор R3 подается на стабилитрон VD1 и ограничивается на уровне 12В. Пульсации напряжения сглаживаются электролитическим конденсатором C1. Нагрузка включается транзистором VT1. При этом резистор R4 подключается к прямому выходу триггера (вывод 1), как показано на рисунке 3.

Собранная из исправных деталей схема не требует налаживания, начинает работать сразу.

28-07-2016

Anthony Smith

Слаботочные выключатели без фиксации, подобные монтируемым на плату тактовым кнопкам, дешевы, доступны и отличаются большим разнообразием размеров и стилей. В то же время кнопки с фиксацией часто имеют бóльшие габариты, они дороже, а диапазон их конструктивных вариантов относительно ограничен. Это может оказаться проблемой, если вам потребуется миниатюрный недорогой выключатель для фиксации питания нагрузки. В статье предлагается схемное решение, позволяющее придать кнопке с самовозвратом функцию фиксации.

Ранее были предложены конструкции, схемы которых основывались на дискретных компонентах и микросхемах , . Однако ниже будет описана схема, которой для выполнения тех же функций потребуется всего пара транзисторов и горсть пассивных компонентов.

На Рисунке 1а приведен вариант схемы включения питания для случая нагрузки, подключенной к земле. Схема работает в режиме «переключателя»; это значит, что первое нажатие включает питание нагрузки, второе выключает, и так далее.

Чтобы понять принцип работы схемы, представим, что источник питания +V S только что подключен, конденсатор C1 в исходном состоянии разряжен, и транзистор Q1 выключен. При этом резисторы R1 и R3 оказываются включенными последовательно и подтягивают затвор P-канального MOSFET Q2 к шине +V S , удерживая транзистор в закрытом состоянии. Сейчас схема находится в «деблокированном» состоянии, когда напряжение нагрузки V L на контакте OUT (+) равно нулю.

При кратковременном нажатии нормально разомкнутой кнопки затвор Q2 подключается к конденсатору C1, разряженному до 0 В, и MOSFET включается. Напряжение нагрузки на клемме OUT (+) немедленно увеличивается до +V S , через резистор R4 транзистор Q1 получает базовое смещение и открывается. Вследствие этого Q1 насыщается и через резистор R3 подключает затвор Q2 к земле, удерживая MOSFET открытым, когда контакты кнопки разомкнуты. Теперь схема находится в «зафиксированном» состоянии, когда оба транзистора открыты, нагрузка получает питание, а конденсатор C1 заряжается до напряжения +V S через резистор R2.

После повторного кратковременного замыкания переключателя напряжение на конденсаторе C1 (теперь равное +V S) окажется приложенным к затвору Q2. Поскольку напряжение затвор-исток Q2 теперь близко к нулю, MOSFET выключается, и напряжение нагрузки падает до нуля. Напряжение база-эмиттер Q1 также опускается до нуля, закрывая транзистор. В результате при отпущенной кнопке ничто не удерживает Q2 в открытом состоянии, и схема возвращается в «деблокированное» состояние, когда оба транзистора выключены, нагрузка обесточена, а C1 разряжается через резистор R2.

Шунтирующий выходные зажимы резистор R5 устанавливать необязательно. При отпущенной кнопке конденсатор C1 разряжается на нагрузку через резистор R2. Если импеданс нагрузки очень велик (то есть, соизмерим с величиной R2), или нагрузка содержит активные устройства, такие, скажем, как светодиоды, напряжение нагрузки во время выключения Q2 может оказаться достаточно большим, чтобы через резистор R4 открыть транзистор Q1 и не позволить схеме выключиться. Резистор R5 при выключении Q2 подтягивает клемму OUT (+) к шине 0 В, обеспечивая быстрое выключение Q1 и давая схеме возможность надлежащим образом перейти в закрытое состояние.

При правильном выборе транзисторов схема будет работать в широком диапазоне напряжений и может использоваться для управления такими нагрузками, как реле, соленоиды, светодиоды и т. д. Однако не забывайте, что некоторые работающие на постоянном токе вентиляторы и моторы продолжают вращаться и после выключения питания. Это вращение может создавать противоЭДС, достаточно большую, чтобы открыть транзистор Q1 и не позволить схеме выключиться. Решение проблемы показано на Рисунке 1б, где последовательно с выходом включен блокировочный диод. В этом случае также можно добавить в схему в резистор R5.

На Рисунке 2 изображена еще одна схема, предназначенная для нагрузок, подключенных к верхней шине питания, таких, например, как показанное в этом примере электромагнитное реле.

Обратите внимание, что Q1 был заменен p-n-p транзистором, а на месте Q2 теперь находится N-канальный MOSFET. Эта схема работает точно так же, как схема описанная выше. Здесь R5 выполняет функцию подтягивающего резистора, соединяющего выходной контакт OUT (-) с шиной +V S , когда транзистор Q2 выключается, и обеспечивающего быстрое закрывание Q1. Как и в предыдущей схеме, резистор R5 является необязательным компонентом, и устанавливается только при некоторых типах нагрузки, упомянутых выше.

Заметим, что в обеих схемах постоянная времени C1, R2 выбирается исходя из требуемого подавления дребезга контактов. Обычно нормальной считается величина от 0.25 с до 0.5 с. Меньшие постоянные времени могут привести к неустойчивой работе схемы, в то время как бóльшие увеличивают время ожидания между замыканиями контактов кнопки, за которое должен произойти достаточно полный заряд и разряд конденсатора C1. При указанных на схеме значениях C1 = 330 нФ и R2 = 1 МОм номинальная величина постоянной времени равна 0.33 с. Обычно этого бывает достаточно, чтобы устранить дребезг контактов и переключить нагрузку за время порядка пары секунд.

Обе схемы предназначены для фиксации и отпускания ключа в ответ на кратковременные замыкания контактов. Однако каждая из них проектировалась таким образом, чтобы гарантировать правильную работу даже при сколь угодно длительном нажатии кнопки. Рассмотрим схему на Рисунке 2, когда транзистор Q2 закрыт. Если кнопка нажимается для выключения схемы, затвор подключается к потенциалу 0 В (поскольку конденсатор C1 разряжен), и MOSFET закрывается, давая возможность общей точке резисторов R1 и R2 подключиться к шине +V S через резистор R5 и импеданс нагрузки. Одновременно Q1 также выключается, в результате чего затвор Q2 оказывается соединенным с шиной GND через резисторы R3 и R4. Если кнопку сразу же отпустить, C1 просто зарядится через резистор R2 до напряжения +V S . Однако если оставить кнопку замкнутой, напряжение затвора Q2 будет определяться потенциалом делителя, образованного резисторами R2 и R3+R4. Считая, что при разблокированной схеме напряжение на контакте OUT (-) приблизительно равно +V S , для напряжения затвор-исток транзистора Q2 можно записать следующее выражение:

Даже если напряжение +V S будет равно 30 В, результирующего напряжения 0.6 В между затвором и истоком не хватит, чтобы открыть MOSFET вновь. Следовательно, при разомкнутых контактах кнопки оба транзистора будут оставаться выключенными.

В публикации были представлены схема и описание электронного переключателя с зависимой фиксацией, в котором использованы восемь кнопок с замыкающими контактами, не фиксируемых в нажатом положении. Переключатель собран на трех микросхемах, причем ПЗУ в нем выполняет функцию приоритетного шифратора. В показано, что ПЗУ позволяет проектировать не только комбинационные устройства (т. е. такие, у которых всем комбинациям входных состояний однозначно соответствуют определенные комбинации выходных), но и асинхронные потенциальные автоматы, у которых благодаря обратным связям и, как следствие, появлению свойства памяти такого однозначного соответствия нет. В качестве простейшего примера такого автомата подойдет известный RS-триггер.

Используя ПЗУ с цепями обратной связи, можно упростить переключатель, описанный в , исключив из него запоминающий регистр и возложив его функцию на ПЗУ. Возможно также исключить и дешифратор. Если для какого-либо разрабатываемого прибора требуется подобный переключатель с числом кнопок не более пяти, его удобно выполнить на ППЗУ К155РЕЗ.

Схема варианта переключателя, собранного на этой микросхеме, показана на рис. 1. Узел формирует два выходных кода. Один из них (код - "1 из 5", активный уровень - низкий) выводят через пять параллельных линий - информационных выходов ПЗУ DS1, - объединенных с пятью адресными входами ПЗУ. Этот код пригоден, в частности, для выбора режима работы того прибора, в который будет встроен переключатель.

Следует отметить, кстати, что включение светодиодов через общий резистор (как в ) может снижать напряжение логической единицы на выходах дешифратора ниже 2,4 В. Поэтому здесь предусмотрены дополнительные резисторы, надежно обеспечивающие нормальное единичное напряжение.

Второй код, если он нужен, выводят через три остальных разряда ПЗУ. Этот код (любого вида, например двоичный) может быть использован для управления коммутацией цифровых или аналоговых сигналов.

Работает переключатель следующим образом. В пять ячеек ПЗУ в соответствии с табл. 1 информацию записывают таким образом, что пять его выходных линий "поддерживают" пять входных линий, т. е. на тот вход, который соответствует нажатой кнопке, с выхода поступает низкий уровень, на остальные четыре - высокий. Таким образом, переключатель находится в устойчивом состоянии и остается в нем после отпускания кнопки.

По остальным 27 адресам ПЗУ записаны единицы во все информационные разряды (числа FF). Поэтому при нажатии на другую кнопку сначала на адресных входах присутствует низкий уровень и от первой нажатой кнопки, и от второй. По любому адресу ПЗУ, содержащему такой "двойной" низкий уровень, записано число FF, которое заменяет нуль на единицу на том входе, который "помнил" низкий уровень от нажатия на первую кнопку. В результате на входе появится адрес с одним нулем - от второй нажатой кнопки, который сразу же будет "поддержан" соответствующей информацией с выхода ПЗУ, и переключатель перейдет в другое устойчивое состояние.

Таким образом, речь идет об устройстве с шестью устойчивыми состояниями. Пять из них соответствуют одной из пяти нажатых кнопок каждое, а шестое - пяти единицам на всех входах ПЗУ. Для практики это положение - холостое, поскольку не может быть установлено нажатием на кнопки. Благодаря "поддержке" переключатель не боится "дребезга" контактов.

Используя дополнительные элементы, нетрудно сделать переключатель на шесть состояний с шестью кнопками. Для этого требуется формировать высокий уровень на входе CS ПЗУ при нажатии на шестую кнопку. Таким формирователем может служить инвертор DD1.1 (рис. 2). Диод VD1 необходим для правильного формирования выходных кодов и свечения шестого светодиода во время нажатия на кнопку SB6.

Восьми выходов ПЗУ уже недостаточно для формирования кодов "1 из 6" и двоичного, поэтому, если нужны они оба, получают недостающий девятый выход, используя элемент И-НЕ DD2.1. Порядок программирования ПЗУ для этого варианта переключателя представлен в табл. 2.

Если необходимо, чтобы переключатель при каждом включении питания всегда устанавливался в определенное состояние (можно выбрать любое одно из 5 или 6). параллельно кнопке с соответствующим номером припаивают оксидный конденсатор емкостью 10...47 мкФ, который, заряжаясь, имитирует нажатие на эту кнопку в течение короткого времени сразу после подачи питания.

Допустимо использование не только одной группы из пяти (шести) кнопок, но и двух групп или более, если поставлена задача сделать несколько пультов управления переключателем. При этом все кнопки дополнительных групп соединяют параллельно соответствующим кнопкам основной группы. Никакого приоритета при этом не возникает. Переключатель перейдет в стабильное состояние, соответствующее той кнопке из любой группы, которая будет отпущена последней.

Выбор порядка подключения выходных линий - произвольный, но для каждого варианта будет новая таблица программирования ПЗУ. В описанном варианте выбран такой порядок подключения, чтобы облегчить трассировку проводников на печатной плате - еще одно преимущество ПЗУ перед жесткой логикой. Попарно соединены те выводы микросхемы, которые в корпусе находятся один напротив другого. Для записывания информации в ПЗУ можно воспользоваться любым подходящим программатором, например, описанным в .

Рекомендуем почитать

Наверх