Стабилитроны. Правильное подключение светодиодов

Приборы 03.08.2023
Приборы

Само название этого прибора “стабилитрон” созвучно слову стабильность или постоянство чего - либо или в чем - либо. В жизни человека очень важна стабильность, стабильность в зарплате, цены в магазине и прочее. В электронике стабильность напряжения питания очень важный, основной параметр, который при настройке или ремонте электронного оборудования проверяют в первую очередь. Напряжение в электрической сети может меняться в зависимости от общей нагрузки, качества электроснабжающих сетей, и еще многих других факторов, но напряжение питания электронных устройств, при этом, должно оставаться неизменным с определенной заданной величиной.

И так, что же такое стабилитрон.

Википедия, тебе даст такое определение:

"Полупроводнико́вый стабилитро́н, или диод Зенера — это полупроводниковый диод, работающий при обратном смещении в режиме пробоя. До наступления пробоя через стабилитрон протекают незначительные токи утечки..."

Все правильно, но слишком заумно.

Я попробую сказать проще

Стабилитрон - это такой полупроводниковый прибор, который стабилизирует напряжение.

Считаю, что на первых порах этого определения достаточно, (а как он стабилизирует напряжение, я расскажу ниже)

Принцип работы стабилитрона

Уважаемый читатель на этом рисунке изображен принцип работы стабилитрона.

Представь, что в некую емкость заливают воду, уровень воды в емкости, должен быть строго определенным, для того чтобы емкость не переполнилась в ней сделана переливная труба по которой вода превышающая заданный уровень будет выливаться из емкости.

Теперь от “сантехники” перейдем к электронике.

Обозначение стабилитрона на принципиальной схеме такое - же, как и у диода, отличие “черточка” катода изображается как буква Г.

Обозначение стабилитрона на схеме

Стабилитрон работает только в цепи постоянного тока , и пропускает напряжение в прямом направлении анод - катод так же - как и диод . В отличи от диода у стабилитрона есть одна особенность, если подать ток в обратном направлении катод - анод, ток через стабилитрон течь не будет, но ток в обратном направлении не будет течь только до тех пор, пока напряжение не превысит заданное значение.

Что является заданным значением напряжения для стабилитрона?

Стабилитрон имеет свои параметры - это напряжение стабилизации и ток. Параметр напряжение - указывает при какой величине напряжения стабилитрон будет пропускать ток в обратном направлении, параметром ток - задана сила тока, при которой стабилитрон может работать не повреждаясь.

Стабилитроны изготавливают для стабилизации напряжения различной величины, например, стабилитрон с обозначением V6.8 будет стабилизировать напряжение в пределах 6.8 Вольта.

Таблица рабочих параметров стабилитронов.


В таблице указаны основные параметры - это напряжение стабилизации и ток стабилизации. Есть и другие параметры, но они тебе пока не нужны. Главное понять суть работы стабилитрона и научиться выбирать нужный тебе для твоих схем и для ремонта радиоэлектроники .

Рассмотрим принципиальную схему объясняющую принцип работы стабилитрона.


Возьмем стабилитрон параметром - напряжение стабилизации 12Вольт. Для того чтобы через стабилитрон начал поступать ток в обратном направлении от катода к аноду, входное напряжение должно быть выше напряжения стабилизации стабилитрона (с запасом). Например - если стабилитрон рассчитан на напряжение стабилизации 12Вольт входное напряжение должно быть не меньше 15Вольт. Балластный резистор Rб ограничивает ток который будет проходить через стабилитрон до номинального. Как видишь, при напряжении, превышающем ток стабилизации стабилитрона, оный начинает сбрасывать лишнее напряжение через себя на минус. Иными словами, стабилитрон, выполняет роль переливной трубы, чем больше напор воды или величина электрического тока, тем сильнее открывается стабилитрон и наоборот при уменьшении напряжения, стабилитрон начинает закрываться, уменьшая прохождения тока через себя.

Эти изменения могут происходить как плавно, так и с огромной скоростью в малых интервалах времени, что позволяет добиться высокого коэффициента стабилизации напряжения.

Если напряжение на входе стабилизатора будет меньше 12Вольт, стабилитрон “закроется” и напряжение на выходе стабилизатора будет “плавать” так - же, как и на входе, при этом никакой стабильности напряжения не будет. Вот почему напряжение входное должно быть больше чем необходимое выходное (с запасом). Приведенная схема называется параметрический стабилизатор. Кто хочет полный расклад по расчету параметрического стабилизатора, пусть посетит ГУГЛ, нам начинающим для первого раза вполне достаточно, не будем заморачивать себя формулами.

Теперь перейдем к лабам (лабораторным работам:).


Перед тобой макет параметрического стабилизатора, на входе и выходе макета имеются вольтметры. Сейчас вольтметр на ВХОДЕ стабилизатора показывает 6 вольт на ВЫХОДЕ стабилизатора практически такое же напряжение. Так как я уже говорил, стабилитрон макета имеет напряжение стабилизации 8и2 вольта, напряжение в 6 Вольт на ВХОДЕ стабилизатора, не превышает напряжение стабилизации стабилитрона, поэтому стабилитрон закрыт.


Теперь я повышаю напряжение на входе стабилизатора до 15 Вольт, напряжение на входе стабилизатора превысило напряжение стабилизации стабилитроне и на выходе стабилизатора достигло заданного напряжения стабилизации 8.2 Вольта таким оно и остается, практически неизменным, даже при резких бросках напряжения, стабилитрон отрабатывает мгновенно, поддерживая стабильность напряжения. Повторяюсь еще раз - “Для того чтобы параметрический стабилизатор работал правильно на входе всегда должно быть напряжение, превышающее напряжение стабилизации стабилитрона т. е. с запасом примерно 15-25%”

Так как ток стабилизации такого параметрического стабилизатора слишком мал, параметрический стабилизатор обычно применяют в блоках питания как стабилизирующий элемент схемы, где кроме самого стабилизатора присутствуют элементы регулировки напряжения, мощные транзисторы.

Пример - схема регулируемого стабилизатора (блока питания).


В современной электронике, параметрические стабилизаторы применяют все реже, в основном используя специальные микросхемы, которые представляют из себя довольно мощные стабилизаторы с очень хорошим коэффициентом стабилизации, они компактны и легко применимы.

Но о них мы поговорим в следующий раз. Тем не менее, параметрические стабилизаторы можно встретить во многих различных электронных схемах, поэтому знать их и понимать элементарно принцип работы нужно.

Как проверить стабилитрон

Для проверки стабилитрона, нужно знать как пользоваться мультиметром и воспользоваться методикой проверки полупроводникового диода , если есть возможность можно собрать схему параметрического стабилизатора и проверить стабилитрон в работе, как описано в этой статье. Если у тебя имеется стабилитрон и ты не знаешь его параметры (стерлась надпись на корпусе стаба), собрав схемку параметрического стабилизатора можно определить на какое напряжение стабилизации работает этот неопознанный стаб.

Много-много лет тому назад такого слова как стабилитрон не существовало вообще. Тем более в бытовой аппаратуре.

Попробуем представить себе громоздкий ламповый приёмник середины двадцатого века. Многие приносили их в жертву собственному любопытству, когда папа с мамой приобретали что-нибудь новое, а «Рекорд» или «Неман» отдавали на растерзание .

Блок питания лампового приёмника был предельно прост: мощный кубик силового трансформатора , который обыкновенно имел всего две вторичных обмотки, диодный мостик или селеновый выпрямитель, два электролитических конденсатора и резистор на два ватта между ними.

Первая обмотка питала накал всех ламп приёмника переменным током и напряжением 6,3V (вольт), а на примитивный выпрямитель приходило порядка 240V для питания анодов ламп. Ни о какой стабилизации напряжения и речи не шло. Исходя из того, что приём радиостанций вёлся на длинных, средних и коротких волнах с очень узкой полосой и ужасным качеством, наличие или отсутствие стабилизации напряжения питания на это качество совершенно не влияло, а приличной автоподстройки частоты на той элементной базе просто быть не могло.

Стабилизаторы в то время применялись только в военных приёмниках и передатчиках, конечно тоже ламповые. Например: СГ1П – стабилизатор газоразрядный, пальчиковый. Так продолжалось до тех пор, пока не появились транзисторы. И тут выяснилось, что схемы, выполненные на транзисторах очень чувствительны к колебаниям питающего напряжения, и обыкновенным простым выпрямителем уже не обойтись. Используя физический принцип, заложенный в газоразрядных приборах, был создан полупроводниковый стабилитрон реже называемый диод Зенера.

Графическое изображение стабилитрона на принципиальных схемах.

Внешний вид стабилитронов. Первый сверху в корпусе для поверхностного монтажа . Второй сверху – в стеклянном корпусе DO-35 и мощностью 0,5 Вт. Третий, – мощностью 1 Вт (DO-41). Естественно, стабилитроны изготавливают в разнообразных корпусах. Иногда в одном корпусе объединяется два элемента.

Принцип работы стабилитрона.

Прежде всего, не следует забывать, что стабилитрон работает только в цепях постоянного тока. Напряжение на него подают в обратной полярности, то есть на анод стабилитрона будет подан минус "-". При таком включении через него протекает обратный ток (I обр ) от выпрямителя. Напряжение с выхода выпрямителя может изменяться, будет изменяться и обратный ток, а напряжение на стабилитроне и на нагрузке останется неизменным, то есть стабильным. На следующем рисунке показана вольт-амперная характеристика стабилитрона.

Стабилитрон работает на обратной ветви ВАХ (Вольт-Амперной Характеристики), как показано на рисунке. К его основным параметрам относятся U ст . (напряжение стабилизации) и I ст . (ток стабилизации). Эти данные указаны в паспорте на конкретный тип стабилитрона. Причём величина максимального и минимального тока учитывается только при расчёте стабилизаторов с прогнозируемым большим изменением напряжения.

Основные параметры стабилитронов.

Для того чтобы подобрать нужный стабилитрон необходимо разбираться в маркировках полупроводниковых приборов. Раньше все типы диодов, включая и стабилитроны, обозначались буквой “Д” и цифрой определяющей, что же это за прибор. Вот пример очень популярного стабилитрона Д814 (А, Б, В, Г). Буква показывала напряжение стабилизации.

Рядом паспортные данные современного стабилитрона (2C147A ), который использовался в стабилизаторах для питания схем на популярных сериях микросхем К155 и К133 выполненных по ТТЛ технологии и имеющих напряжение питания 5V.

Чтобы разбираться в маркировках и основных параметрах современных отечественных полупроводниковых приборов необходимо немного знать условные обозначения. Они выглядят следующим образом: цифра 1 или буква Г – германий, цифра 2 или буква К – кремний, цифра 3 или буква А – арсенид галлия. Это первый знак. Д – диод, Т – транзистор, С – стабилитрон, Л – светодиод. Это второй знак. Третий знак это группа цифр обозначающих сферу применения прибора. Отсюда: ГТ 313 (1Т 313) – высокочастотный германиевый транзистор, 2С147 – кремниевый стабилитрон с номинальным напряжением стабилизации 4,7 вольта, АЛ307 – арсенид-галлиевый светодиод.

Вот схема простого, но надёжного стабилизатора напряжения.

Между коллектором мощного транзистора и корпусом подается напряжение с выпрямителя и равное 12 – 15 вольт. С эмиттера транзистора мы снимаем 9V стабилизированного напряжения, так как в качестве стабилитрона VD1 мы используем надёжный элемент Д814Б (см. таблицу). Резистор R1 – 1кОм, транзистор КТ819 обеспечивающий ток до 10 ампер.

Транзистор необходимо разместить на радиаторе-теплоотводе. Единственный недостаток данной схемы – это невозможность регулировки выходного напряжения. В более сложных схемах подстроечный резистор, конечно, имеется. Во всех лабораторных и домашних радиолюбительских источниках питания есть возможность регулировки выходного напряжения от 0 и до 20 – 25 вольт.

Интегральные стабилизаторы.

Развитие интегральной микроэлектроники и появление многофункциональных схем средней и большой степени интеграции, конечно, коснулось и проблем связанных со стабилизацией напряжения. Отечественная промышленность напряглась и выпустила на рынок радиоэлектронных компонентов серию К142, которую составляли как раз интегральные стабилизаторы. Полное название изделия было КР142ЕН5А, но так как корпус был маленький и название не убиралось целиком, стали писать КРЕН5А или Б, а в разговоре они назывались просто «кренки».

Сама серия была достаточно большая. В зависимости от буквы варьировалось выходное напряжение. Например, КРЕН3 выдавал от 3 до 30 вольт с возможностью регулировки, а КРЕН15 был пятнадцативольтовым двухполярным источником питания.

Подключение интегральных стабилизаторов серии К142 было крайне простым. Два сглаживающих конденсатора и сам стабилизатор. Взгляните на схему.

Если есть необходимость получить другое стабилизированное напряжение, то поступают следующим образом: допустим, мы используем микросхему КРЕН5А на 5V, а нам нужно другое напряжение. Тогда между вторым выводом и корпусом ставится стабилитрон с таким расчётом, чтобы сложив напряжение стабилизации микросхемы, и стабилитрона мы получили бы нужное напряжение. Если мы добавим стабилитрон КС191 на V = 9,1 + 5V микросхемы, то на выходе мы получим 14.1 вольт.

  • 6. Обобщенная классификация сэу по различным признакам, преобразовательные сэу и сэу для получения управляющих воздействий.
  • 7. Управляемые сэу, обобщенная структурная схема технологического объекта с управляемым сэу.
  • 22. Характеристики выключения тиристора, время выключения (восстановление).
  • 8. Классификация исполнительных сэу.
  • 9. Классификация преобразовательных сэу.
  • 10. Простые и комбинированные преобразователи и их структурные схемы.
  • 17. Определение основных потерь в вентилях на низких частотах.
  • 11. Роль эвм, микропроцессорной техники в развитии сэу.
  • 12. Виды преобразования параметров электрической энергии, примеры использования преобразовательных сэу.
  • 13. Основные пассивные компоненты, используемые в сэу: резисторы, конденсаторы, индуктивности, основные параметры и конструктивные особенности.
  • 14. Силовые полупроводниковые приборы (спп), общие сведения, направления развития и классификация по степени управляемости.
  • 15. Силовые диоды (вентили), физические основы и конструкция, система обозначений и маркировок, система параметров и характеристик, специальные группы параметров.
  • 16. Эквивалентная тепловая схема силового диода, внутреннее и общее установившиеся тепловые сопротивления.
  • 18. Составляющие дополнительных потерь в управляемых и неуправляемых спп.
  • 19. Последовательное и параллельное соединение силовых диодов, расчет выравнивающих элементов.
  • 20. Силовые стабилитроны и ограничители напряжения, условное обозначение, основные параметры и вах, области использования.
  • 23. Система параметров тиристора по току и напряжению.
  • 24. Система динамических параметров тиристора.
  • 21. Тиристоры, структурная схема, двухтранзисторная модель и вах тиристора, условия и характеристики включения.
  • 34. Принципы построения современных силовых биполярных транзисторов, основные параметры.
  • 25. Характеристики управляющего перехода тиристора и параметры цепи управления.
  • 26. Зависимости параметров тиристора от температуры, система обозначений и маркировок тиристора.
  • 27. Базовая структура, обозначение, вах и параметры симистора, области использования симистора.
  • 29. Базовые структуры и принцип действия запираемого тиристора и тиристора с комбинированным выключением.
  • 28. Структура, обозначение и параметры тиристорных оптронов, области их использования.
  • 33. Основные схемы устройств запирания тиристоров, определение схемного времени восстановления тиристоров.
  • 30. Структура и вах тиристора-диода.
  • 32. Требования, предъявляемые к управляющим импульсам тиристора, режимы работы генераторов управляющих импульсов.
  • 36. Построение мощных переключающих элементов на основе пт. Преимущества и недостатки пт.
  • 38. Временные диаграммы выключения igbt и зависимость напряжения открытого транзистора от температуры.
  • 37. Структура, эквивалентная схема и графическое обозначение биполярных транзисторов с изолированным затвором (igbt), принцип действия, преимущества и недостатки.
  • 39. Структура построения и схемы силовых полупроводниковых модулей (спм), области использования.
  • 41. Структура и конструктивные особенности запираемых тиристоров типа gct и igbt, принцип действия, параметры и области использования.
  • 42.Режимы работы спп в сэу и их характеристика.
  • 44. Исполнительные сэу, классификация, области использования.
  • 45. Импульсные усилители мощности, основные схемы, особенности работы, расчет элементов.
  • 54. Преобразовательные сэу, классификация, области использования.
  • 46. Способы формирования управляющих воздействий, структура управляющих схем для усилителей мощности.
  • 51. Широтно-импульсные регуляторы (шир) постоянного тока, классификация, основные схемы и их особенности.
  • 52. Регулировочная характеристика последовательных шир, расчет основных элементов.
  • 53. Регулировочная характеристика параллельных шир, расчет основных элементов.
  • 55 . Выпрямители одно и трехфазного питания, структура, классификация, основные эксплуатационные параметры и характеристики.
  • 56. Основные схемы выпрямителей однофазного питания, временные диаграммы их работы на различные виды нагрузок, расчет основных параметров и характеристик.
  • 1. Схема однополупериодного выпрямления
  • 2. Двухполупериодная схема выпрямления с выводом нулевой точки
  • 3. Однофазная мостовая схема выпрямления
  • 57. Основные схемы выпрямителей трехфазного питания, временные диаграммы работы на различные виды нагрузок, расчет основных параметров и характеристик.
  • 59. Временные диаграммы работы регулируемых выпрямителей трехфазного питания на различные виды нагрузок, регулировочная характеристика.
  • 61. Структурные схемы систем управления регулируемыми выпрямителями и ивс, основные узлы и их реализация.
  • 63. Автономные инверторы тока (аит), классификация, основные схемы, временные диаграммы работы, расчет основных параметров и характеристик, примеры использования в системах управления.
  • 62. Автономные инверторы (аи), определение, назначение, классификация, области использования.
  • 63. Автономные инверторы тока (аит), классификация, основные схемы, временные диаграммы работы, расчет основных параметров и характеристик, примеры использования в системах управления.
  • 65. Автономные резонансные инверторы (аир), определение, классификация, физические процессы и особенности работы.
  • 66. Основные схемы аир без встречных диодов, временная диаграмма работы, расчет основных параметров и характеристик, достоинства и недостатки.
  • 67. Основные схемы аир со встроенными диодами и удвоением частоты, временные диаграммы работы, расчет основных параметров и характеристик.
  • 68. Использование аир со встречными диодами и удвоением частоты в системах управления электротехнологических установок.
  • 40. Силовые интеллектуальные приборы (сип), структура, классификация, особенности и защитные функции сип.
  • 72. Структура быстродействующих систем защиты сэу при аварийных режимах, основные элементы и требования к ним.
  • 19. Последовательное и параллельное соединение силовых диодов, расчет выравнивающих элементов.

    В настоящее время созданы силовые диоды на токи свыше 1000 А и напряжения свыше 1000 В.

    При последовательном и параллельном соединениях диодов из-за несовпадения их ВАХ возникают неравномерные распределения напряжений или токов между отдельными диодами. На рис. 1.3 представлены схемы: последовательного (рис. 1.3, а) и параллельного (рис; 1.3, 6) соединения двух диодов. Там же представлены прямые (рис. 1.3, г) и обратные (рис. 1.3, в) ветви ВАХ соединяемых диодов. Согласно приведенным ВАХ при последовательном соединении диодов, приложенное к ним обратное напряжение U R при одинаковых обратных токах I R распределяется между диодами неравномерно: к диоду VD1 прикладывается напряжение U R 1 , а к диоду VD 2 - напряжение U R 2 (рис. 1-3,в). При параллельном соединении диодов протекающий через них общий ток I F при одинаковых прямых падениях напряжения U F распределяется также неравномерно: через диод VD 1 протекает ток I F 1 , а чёрtp диод VD2 ток I F 2 (рис. 1.3,г). Для исключения выхода из строя диодов из-за перегрузки по току или перенапряжений принимают специальные меры по выравниванию указанных параметров между отдельными диодами. При последовательном соединении диодов для выравнивания напряжений обычно используются резисторы, включенные параллельно диодам, а при параллельном соединении - индуктивные делители различных типов.


    Рис. 1.3. Последовательное и параллельное соединение диодов

    20. Силовые стабилитроны и ограничители напряжения, условное обозначение, основные параметры и вах, области использования.

    Стабилитрон (диод Зенера) - полупроводниковый диод, предназначенный для поддержания напряжения источника питания на заданном уровне. По сравнению с обычными диодами имеет достаточно низкое регламентированное напряжение пробоя (при обратном включении) и может поддерживать это напряжение на постоянном уровне при значительном изменении силы обратного тока. Материалы, используемые для создания p-n перехода стабилитронов, имеют высокую концентрацию легирующих элементов (примесей). Поэтому, при относительно небольших обратных напряжениях в переходе возникает сильное электрическое поле, вызывающее его электрический пробой, в данном случае являющийся обратимым (если не наступает тепловой пробой вследствие слишком большой силы тока). В основе работы стабилитрона лежат два механизма: Лавинный пробой p-n перехода

    Туннельный пробой p-n перехода (Эффект Зенера в англоязычной литературе). Несмотря на схожие результаты действия, эти механизмы различны, хотя и присутствуют в любом стабилитроне совместно, но преобладает только один из них. У стабилитронов до напряжения 5,6 вольт преобладает туннельный пробой с отрицательным температурным коэффициентом[источник не указан 304 дня], выше 5,6 вольт доминирующим становится лавинный пробой с положительным температурным коэффициентом[источник не указан 304 дня]. При напряжении, равном 5,6 вольт, оба эффекта уравновешиваются, поэтому выбор такого напряжения является оптимальным решением для устройств с широким температурным диапазоном применения[источник не указан 321 день]. Пробойный режим не связан с инжекцией неосновных носителей заряда. Поэтому в стабилитроне инжекционные явления, связанные с накоплением и рассасыванием носителей заряда при переходе из области пробоя в область запирания и обратно, практически отсутствуют. Это позволяет использовать их в импульсных схемах в качестве фиксаторов уровней и ограничителей.

    Виды стабилитронов: прецизионные - обладают повышенной стабильностью напряжения стабилизации, для них вводятся дополнительные нормы на временную нестабильность напряжения и температурный коэффициент напряжения (например: 2С191, КС211, КС520); двусторонние - обеспечивают стабилизацию и ограничение двухполярных напряжений, для них дополнительно нормируется абсолютное значение несимметричности напряжения стабилизации (например: 2С170А, 2С182А); быстродействующие - имеют сниженное значение барьерной ёмкости (десятки пФ) и малую длительность переходного процесса (единицы нс), что позволяет стабилизировать и ограничивать кратковременные импульсы напряжения (например: 2С175Е, КС182Е, 2С211Е).

    Существуют микросхемы линейных регуляторов напряжения с двумя выводами, которые имеют такую же схему включения, что и стабилитрон, и зачастую, такое же обозначение на электрических принципиальных схемах.

    Типовая схемавключения стабилитрона

    Обозначение стабилитрона на принципиальных схемах

    Обозначение двуханодного стабилитрона на принципиальных схемах

    Параметры. Напряжение стабилизации - значение напряжения на стабилитроне при прохождении заданного тока стабилизации. Пробивное напряжение диода, а значит, напряжение стабилизации стабилитрона зависит от толщины p-n-перехода или от удельного сопротивления базы диода. Поэтому разные стабилитроны имеют различные напряжения стабилизации (от 3 до 400 В). Температурный коэффициент напряжения стабилизации - величина, определяемая отношением относительного изменения температуры окружающей среды при постоянном токе стабилизации. Значения этого параметра у различных стабилитронов различны. Коэффициент может иметь как положительные так и отрицательные значения для высоковольтных и низковольтных стабилитронов соответственно. Изменение знака соответствует напряжению стабилизации порядка 6В. Дифференциальное сопротивление - величина, определяемая отношением приращения напряжения стабилизации к вызвавшему его малому приращению тока в заданном диапазоне частот. Максимально допустимая рассеиваемая мощность - максимальная постоянная или средняя мощность, рассеиваемая на стабилитроне, при которой обеспечивается заданная надёжность.

    Cтабилитрон используется для стабилизации напряжения (например, в ).

    Обозначение стабилитрона

    Включение стабилитрона


    (его ещё называют диодом Зенера ) включается как показано на рисунке. Включение стабилитрона на первый взгляд нелогично. Стабилитроны включаются как бы "наоборот" по сравнению с диодами. При подаче на них обратного напряжения происходит "пробой" и напряжение между их выводами остаётся неизменным. Последовательно обязательно должен быть включён резистор для ограничения проходящего тока через стабилитрон (он называется током стабилизации) и обеспечения падения "лишнего" напряжения от выпрямителя.

    Каждый стабилитрон имеет своё напряжение пробоя (стабилизации) и свой рабочий ток. Исходя из этого тока рассчитывается номинал резистора , включённого последовательно со стабилитроном. На импортных стабилитронах напряжение стабилизации напечатано на корпусе стабилитрона. Обозначение диодов - стабилитронов начинается с BZX... или BZY... Их напряжение стабилизации (пробоя) напечатано с буквой V вместо десятичной запятой. Таким образом, 3V9 означает 3.9 вольта.

    Минимальное напряжение стабилизации, на которое существуют стабилитроны, 2 В.

    Последовательное соединение стабилитронов

    Последовательное соединение стабилитронов делают в тех случаях, когда надо получить стабилизированное напряжение, на которое не существует стабилитронов (или нет в наличии). Как правило в высоковольтных стабилизаторах напряжения устанавливают несколько последовательно соединённых стабилитронов. Общее напряжение стабилизации будет равно сумме напряжений стабилизации каждого стабилитрона. Желательно соединять последовательно только однотипные стабилитроны на одинаковое напряжение стабилизации.

    Является разновидностью диода, но имеет уникальное свойство – при обратном включении он открывается при определенном, строго заданном напряжении и начинает пропускать ток. Пока этот ток лежит в определенном пределе, на стабилитроне устанавливается постоянное напряжение. Это позволяет использовать стабилитроны для получения стабильного напряжения, которое необходимо для питания очень многих электронных устройств.

    Итак, в нашем распоряжении стабилитрон, к примеру, КС156, набор резисторов и источник постоянного напряжения, величину которого можно регулировать в диапазоне 0…12 В. Соберем следующую схему:

    Выкручиваем ручку регулировки блока питания в «0» и подключаем к нему нашу схему, соблюдая полярность. Напряжение на стабилитроне равно нулю, ток через него, ясное дело, тоже не течет. Начинаем увеличивать напряжение. 2 В, затем 3 В. Тока через стабилитрон все еще нет. Продолжаем увеличивать и замечаем, что ток появился – наш стабилитрон открылся.

    При дальнейшем повороте ручки ток продолжает расти, напряжение на стабилитроне остается неизменным (в нашем случае – 5.6 В). Увеличиваем еще напряжение и в какой-то момент времени ток исчезает, напряжение на стабилитроне скачком поднимается до напряжения блока питания – наш стабилитрон пробит окончательно и бесповоротно или, как говорят, «сгорел». Стабилитрона мы лишились, но в нашем распоряжении есть полезная информация которую и рассмотрим:

    Iст.мин – ток стабилизации минимальный. Минимальный ток, при котором напряжение на стабилитроне перестало расти (прибор вошел в режим стабилизации)
    Iст.макс – максимально допустимый ток через стабилитрон. Ток, при котором стабилитрон еще работает, но если его увеличить, прибор сгорит.
    Uст – напряжение стабилизации. Напряжение на стабилитроне, которое остается неизменным, пока через стабилитрон течет ток в диапазоне Iст.мин … Iст.макс.

    Все эти данные мы получили ценой жизни пусть несложного и недорогого, но прибора. Тем не менее, их совсем несложно получить из справочной литературы, зная тип стабилитрона. Открываем справочник по стабилитронам и смотрим:

    КС456А:
    Iст.мин – 1 мА;
    Iст.макс – 139 мА;
    Uст — 5.6 В;
    Iст.ном – 30 мА.

    У нас даже появилась дополнительная информация: Iст.ном — номинальный ток стабилизации. Именно при таком токе стабилитрон будет работать в оптимальном режиме – если сетевое напряжение начнет «прыгать», то прибор не выйдет из режима стабилизации и не сгорит, а будет продолжать выдавать 5.6 В.

    Выпускаются стабилитроны, конечно, на разное напряжение – от единиц и долей до десятков и даже сотен вольт, кроме того, для получения необходимого напряжения стабилизации приборы можно соединять последовательно, но с таким расчетом, чтобы ток через них укладывался в диапазон стабилизации для обоих стабилитронов. При последовательном соединении напряжения стабилизации складываются, параллельно стабилитроны включать нельзя . Почему? В этом несложном вопросе, я думаю, вы разберетесь сами.

    Собранная нами схема, по сути, является готовым стабилизатором напряжения, но питать она может только не очень прожорливые схемы, потребляющие единицы, максимум десяток мА. В противном случае изменение сопротивления нагрузки просто выведет стабилитрон из режима. Для получения более мощного стабилизированного источника питания придется схему усложнить, что мы и сделаем в следующий раз.

    Рекомендуем почитать

    Наверх