Какой материал используется в каркасе кресла вертолета. Композиционные материалы в авиастроении

Проводка  11.12.2023

Офисное кресло на сегодняшний день является высокотехнологичным изделием с большим количеством разнообразных регулировок. Функциональность, практичность, износостойкость, комфорт, эргономичность и эстетичность – свойства, которыми обладает качественное офисное кресло. Разработкой и усовершенствованием офисных кресел занимаются конструкторы, врачи и дизайнеры.

Современное офисное кресло состоит из каркаса – спинки и сиденья, подлокотников, обивки и наполнителя, газлифта, крестовины, роликов и механизма.

Каркас

Каркас – один из основных конструктивных элементов офисного кресла. Бывает двух типов: монолитный и немонолитный.

Монолитный – спинка и сиденье образуют единый каркас, что делает конструкцию кресла более прочной, при этом такое кресло можно использовать без подлокотников в случаях, когда подлокотники съемные.

Немонолитный – спинка и сиденье соединены подлокотниками, металлической пластиной или другим элементом.

Спинка

Спинка кресла выполняет функцию поддержки спины, может быть низкой или высокой, форма спинки – прямоугольной или закругленной.

Величина угла между сидением и спинкой офисного кресла должна быть чуть больше 90 градусов, что позволяет расслабить поясничный отдел позвоночника при откидывании на спинку стула.

Валик на спинке кресла в области расположения поясничного отдела позвоночника способствует равномерному распределению нагрузки на позвоночник и придает анатомическую форму спинке, повышая эргономические свойства кресла. Иногда кресла оснащаются системой регулировки поясничного валика, что создает дополнительный комфорт при их использовании.

Конструкция некоторых кресел предусматривается наличие подголовника, который позволяет расслабить шейный отдел позвоночника.

Регулировка спинки кресла (угла наклона спинки, фиксации спинки в определенном положении и пр.) осуществляется при помощи различных механизмов регулировки.

Сиденье

Сиденье офисного кресла может быть жестким, полумягким и мягким.

Жесткое сиденье выполнено из эластичных настилочных материалов, например, соломки, дерева или металла.

Полумягкое сиденье имеет среднюю толщину настила.

Мягкое сиденье имеет большую толщину настила и оснащено пружинами.

Нисходящий передний край сиденья должен быть округлой формы для предотвращения нарушения кровоснабжения ног.

Наиболее предпочтительная ширина сиденья – 400-480 мм, глубина – 420 мм. Регулировка глубины сиденья может осуществляться двумя способами: благодаря передвижению сиденья или перемещению спинки кресла.

Идеальное положение сиденья кресла – ступни полностью стоят на полу, ноги согнуты в коленях под углом 90 градусов. При этом, глубина офисного кресла должна обеспечивать такое положение ног, при котором бедра плотно прилегают к сиденью, а подколенные ямки не касаются сиденья кресла.

Подлокотники

Подлокотники служат опорой локтям, тем самым снимая нагрузку с плеч, шеи и позвоночника, и уменьшают усталость рук. Обивка на подлокотниках создает дополнительный комфорт при работе. Наибольшую необходимость в подлокотниках испытываю люди, часто и много работающие за компьютером, набирающие текст с клавиатуры. Отсутствие подлокотников может привести к плохому самочувствию, быстрой утомляемости, снижению работоспособности.

Некоторые кресла оснащены регулируемыми по высоте, ширине и углу наклона подлокотниками. В случае, если подлокотники не оснащены механизмом регулировки, они должны обеспечивать такое положение рук, при котором руки согнуты в локтях под углом в 90 градусов.

Подлокотники крепятся к каркасу кресла разными способами:

– Подлокотники крепятся к сиденью кресла. При необходимости снимаются, не нарушая целостность конструкции кресла.

– Подлокотники крепятся к спинке и к сиденью кресла, соединяя их.

– Подлокотники крепятся к спинке и к сиденью кресла, соединяя их. При этом, спинка и сиденье скреплены друг с другом металлической пластиной или другим элементом. В большинстве случаев, подлокотники при необходимости снимаются, не нарушая целостность конструкции.

Обивка

В качестве обивки для офисных кресел используются качественные износостойкие материалы: разнообразные по структуре и составу синтетические ткани, натуральная или искусственная кожа.

Синтетическая ткань – очень прочный материал, достаточно неприхотливый в уходе и антистатический. Обладает хорошей гигроскопичностью и воздухопроницаемостью, имеет эстетичный внешний вид и большое разнообразие фактур и расцветок.

Натуральная кожа – износостойкий, эластичный, простой в уходе материал. Обладает хорошей воздухопроницаемостью, благодаря этому, при использовании офисных кресел с обивкой из натуральной кожи, процессы естественного теплообмена между телом человека и окружающей средой не нарушаются. Натуральная кожа различается способом выделки, технологией покраски и качеством сырья.

Искусственная кожа – практичный и долговечный материал, устойчивый к воздействию ультрафиолетовых лучей.

Акриловая сетка – прочный, достаточно жесткий материал, который используется для обивки спинок эргономичных кресел.

Наполнитель

В качестве наполнителя в офисных креслах используют пенополиуретан или поролон – материалы, очень схожие друг с другом. Пенополиуретан износоустойчивее и долговечнее поролона. Набивка из полиуретана изготавливается формованной (т.е. нужной толщины, формы, с анатомическим профилем), а поролон поставляется блоками разной толщины, из которых вырезаются необходимые формы. Формованный пенополиуретан отлично подходит для изготовления спинок и сидений кресел, при этом исключается возможность ухудшения качества товара за счет экономии производителя на материале (толщине или плотности набивки). В случае с использованием поролона качество товара главным образом зависит от добросовестности производителя.

Газлифт

Газлифт (газпатрон) – это стальной баллон, наполненный инертным газом. Газлифт предназначен для регулировки кресла по высоте, и выступает в качестве амортизатора.

Газлифты бывают короткие, средние или высокие. Как правило, на кресла для руководителей устанавливают короткие газлифты, на офисные кресла – короткие или средние газлифты, на детские кресла – средние или высокие. Все газлифты имеют стандартные посадочные размеры и являются взаимозаменяемыми.

Газлифт может быть хромированным или черным. Черный газлифт (самый распространенный) комплектуется декоративным пластиковым чехлом черного цвета. Хромированный газлифт не комплектуется декоративным чехлом и служит продолжением хромированной крестовины.

Крестовина.

Крестовина – это нижняя часть кресла, которая несет на себе основную нагрузку. Самыми устойчивыми являются крестовины с большим диаметром и пятилучевой основой, оснащенной роликами. Такая конструкция обеспечивает максимальную подвижность во всех направлениях и комфорт передвижения в кресле.

Надежность крестовины в первую очередь зависит от качества материала, из которого она отлита. Крестовины производятся из пластика и металла.

Пластик – недорогой, но достаточно качественный материал, по свойствам приближенный к металлу.

Металл, в большинстве случаев, хромированный, прочнее пластика и имеет более представительный внешний вид. Единственный недостаток металлической крестовины – больший вес по сравнению с пластиковой.

Как правило, крестовина и подлокотники изготавливаются в одном материале и цвете, поэтому при производстве крестовин также используют недорогую окрашенную древесину для изготовления деревянных накладок на металлический каркас крестовины.

Ролики.

Ролики для офисных кресел производятся из полипропилена, полиамида (нейлона) или полиуретана (эластичный пластик). Жёсткие и прочные ролики из полипропилена или полиамида предназначаются для стандартных напольных покрытий, а мягкие ролики из полиуретана – для паркета или ламината. Стандарты качества роликов у каждого производителя разные, а размеры роликов, как правило, одинаковые.

Механизмы офисного кресла

Для комфортного использования офисного кресла большое значение имеет наличие удобно расположенных, простых в управлении механизмов регулировки. На сегодняшний день существует большое количество разнообразных механизмов, которые условно можно разделить на несколько видов: простые, сложные и механизмы качания.

Простые механизмы регулируют кресла только по высоте, например, механизм Пиастра. Простые механизмы устанавливаются на кресла для персонала.

Механизмы качания фиксируют кресло только в рабочем положении, например, механизм Топ Ган.

Сложные механизмы позволяют отрегулировать и зафиксировать кресло так, чтобы создать человеку максимально комфортные условия в процессе работы, сохранив здоровье и обеспечив высокую работоспособность. Примером такого механизма является Синхромеханизм.

Для улучшения лётно-тактических характеристик боевых самолётов и вертолётов в странах агрессивного блока выполняются дорогостоящие программы, предусматривающие снижение веса конструкции летательных аппаратом за счёт применения новых, более перспективных материалов, к числу которых относятся так называемые композиционные материалы.

Ведущее место в капиталистическом мире по разработке композиционных материалов и их использованию в конструкциях летательных аппаратов (особенно военного назначения) принадлежит , где темпы работ и этой области непрерывно растут. Если в 1958 году на НИОКР по созданию таких материалов Пентагону было выделено 400 тыс. долларов, то к 1967 году расходы по той же статье поставили около 11 млрд. долларов. Координацию проводимых исследований (применительно к авиационным конструкциям) осуществляет лаборатория материалов ВВС США и . Лаборатория материалов занимается оценкой эффективности применения композиционных материалов к конструкции военных самолётов. В настоящее время по контрактам с ВВС и программам, финансируемым крупными авиастроительными фирмами, производится и испытывается большое количество элементов конструкции самолётов и вертолётов из композиционных материалов.

Композиционный материал (иногда его называют композит) состоит из высокопрочного наполнителя, ориентированного в определённом направлении, и матрицы. В качестве армирующих наполнителей (силовая основа композиции) применяются волокна бериллия, стекла, графита, стали, карбида кремния, бора или так называемые нитевидные кристаллы окиси алюминия, карбида бора, графита, железа и т. д. Матрицы изготовляются из синтетических смол (эпоксидных, полиэфирных, кремниево-органических) или сплавов металлов (алюминия, титана и других) Соединение волокон или нитевидных кристаллов с матрицей производится горячим прессованием, литьём, плазменным напылением и некоторыми другими способами.

Наибольшее распространение в авиа- и ракетостроении за рубежом получили композиционные материалы на основе высокопрочных волокон. Композиционный материал ведёт себя как единое структурное целое и обладает свойствами, которых не имеют составляющие его компоненты. Особенностью композиционных материалов является анизотропность их свойств (то есть зависимость, физических, в том числе механических, свойств материалов от направления), которая определяется ориентацией армирующих волокон. Заданную прочность материала получают, ориентируя волокна наполнителя в направлении действия основных усилии. Иностранные специалисты считают, что это открывает новые возможности при конструировании силовых элементов самолётов и вертолётов.

По мнению зарубежных специалистов, с точки зрения характеристик удельной прочности и удельной жёсткости наиболее перспективны композиционные материалы, в которых в качестве упрочняющей арматуры используются волокна бора, карбида бора и углерода. К таким материалам относятся бороэпоксидные материалы (боропластики, углепластики, бороалюминий).

Бороэпоксидные композиционные материалы

За рубежом наибольшее распространение получили материалы (боропластики) с армирующим наполнителем из волокон бора (бороволокон) и эпоксидными матрицами. По данным иностранной печати, применение боропластиков позволяет уменьшил вес конструкции на 20-40%, увеличить её жёсткость и повысить эксплуатационную надёжность изделия. Композиционные материалы на основе бороволокна имеют высокие показатели по прочности, жёсткости и сопротивлению усталости. Например, в иностранной печати отмечалось, что отношение удельной прочности боропластиков к удельной прочности алюминиевого сплава при растяжении составляет 1,3-1,9, сжатии - 1,5, сдвиге - 1,2, смятии - 2,2, а усталостная характеристика возрастает в 3,8 раза. Кроме того, боропластики сохраняют свои качества в диапазоне температур от -60 до + 177°С. Сочетание этих свойств и предопределило перспективность широкою использования боропластиков в авиационной и ракетно-космической технике.

Как следует из сообщении зарубежной печати, масштабы применения боропластиков в самолётостроении США уже в настоящее время весьма значительны. Например, на один истребитель расходуется около 750 кг боропластиков. Эти материалы используются для усиления элементов силового набора накладками из боропластика, что обеспечивает снижение веса элементов конструкции и повышение их несущей способности, а также для изготовления обшивок.

Благодаря применению боропластиков значительно упрощается технология производства, и, кроме того, возможно сокращение общего количества узлов и деталей в некоторых элементах конструкции самолёта. Например, по заявлению специалистов фирмы «Макдоннелл Дуглас», при изготовлении из боропластиков руля направления самолёта F-4 число деталей сократилось с 240 до 84.

Композиционные материалы с углеродными волокнами

Иностранные специалисты считают, что в условиях высоких температур, возникающих при сверхзвуковом полете, наиболее эффективны композиционные материалы на основе матриц, армированных волокнами графита (углерода). Использование этих материалов в конструкциях современных и перспективных сверхзвуковых самолётов выгодно с точки зрения экономии веса конструкции, особенно для узлов, вес которых в большей степени определяется требованиями жёсткости, чем прочности. Наибольшее распространение за рубежом получили материалы с углеродными волокнами на основе эпоксидных матриц (углепластики) и материалы на основе углеродных графитизированных матриц, армированных волокнами углерода («углерод-углерод»).

Углепластики

Иностранная печать отмечает, что углепластики имеют малый удельный вес - 1,5 г/куб.см. (алюминиевые сплавы 2,8 г/куб.см., титановые 4,5 г/куб.см); высокие жёсткость, вибропрочность и показатели усталостной прочности. Всё это делает их одними из самых перспективных материалов для производства авиационной и космической техники. Сообщается, при всех основных видах действующих нагрузок удельная прочность углепластиков оказывается выше прочности алюминиевого сплава. Иностранные специалисты отмечают, что прочность и жёсткость углепластиков примерно в шесть раз выше, чем у основных сортов стали, используемых в конструкциях самолётов.

В 1969 году лаборатория материалов ВВС США заключила с фирмой «Нортроп» контракт на разработку опытных образцов конструкции из композиционных материалов на основе графита. Первоначально использование углепластиков в конструкциях самолётов было незначительным из-за высокой стоимости углеродного волокна (700-900 долларов за 1 кг). Впоследствии, в результате организации широкого выпуска волокна, стоимость снизилась до 120-150 долларов. Но прогнозам американских специалистов, через три-пять лет она не будет превышать 50-80 долларов.

По данным зарубежной печати, в настоящее время применение углепластиков в авиастроении значительно возросло. Различные элементы конструкций из этого материала проходят испытания на самолётах F-5E, A-4D и F-111. Фирма «Боинг» по контракту с ВВС США исследует возможности использования этих материалов в конструкции крыла перспективного высотного беспилотного разведывательного самолёта. Подобные работы ведутся и в других капиталистических странах. Например, английская Фирма «Бритиш эркрафт» по контракту, заключённому с министерством обороны Великобритании, создаёт из углепластиков элементы планеров некоторых самолётов.

Композиционные материалы «углерод-углерод» обладают малым удельным весом (1,4 г/куб.см.), высокими теплозащитными свойствами, способностью сохранять прочностные характеристики при температурах свыше 2500 градусов Цельсия. Благодаря этим и другим качествам они считаются весьма перспективными для изготовления тех деталей и узлов самолётов, которые работают в условиях высоких температур, а также для теплозащитных экранов летательных аппаратов, прежде всего космических кораблей. По сообщениям зарубежной печати, в настоящее время из этого материала для самолётов разработаны детали колёсных тормозов, вес их составляет около 30% веса стальных тормозов. По мнению специалистов американской фирмы «Данлоп», ресурс тормозных устройств из этих материалов - 3000 посадок, что в пять-шесть раз превышает срок эксплуатации обычных тормозов.

Бороалюминиевый композиционный материал (бороалюминий)

В качестве армирующего наполнителя этого композиционного материала используются волокна бора (иногда с покрытием из карбида кремния), а в качестве матрицы - алюминиевые сплавы. Бороалюминий в 3,5 раза легче алюминия и в 2 раза прочнее его, что позволяет получить значительную весовую экономию. Кроме того, при высоких температурах (до 430°С) бороалюминиевый композиционный материал имеет в 2 раза большие значения удельной прочности и жёсткости по сравнению с титаном, что даёт возможность его применения для самолётов со скоростями полёта М=3, в конструкциях которых в настоящее время используется титан. Зарубежные специалисты считают бороалюминий также одним из перспективных композиционных материалов, применение которого может дать до 50% экономии веса конструкции летательных аппаратов.

По сообщениям иностранной печати, работы по исследованию характеристик бороалюминия и внедрению его в авиастроение выполняются несколькими американскими фирмами. Например, фирма «Дженерал дайнэмикс» из этого материала изготовляет элементы конструкции хвостовой части самолёта F-111, а фирма «Локхид» - экспериментальный кессон центроплана самолёта С-130 . Специалисты фирмы «Боинг» изучают возможность применения бороалюминиевого материала в стрингерах сверхтяжёлых самолётов.

В настоящее время бороалюминиевый композиционный материал находит все большее применение в конструкциях авиационных двигателей. По данным зарубежной печати, фирма «Пратт-Уитни» использует его при производстве лопаток вентилятора первой и третьей ступеней ТРДД JT8-D, TF-30, F-100, а Фирма «Дженерал электрик» - лопаток вентилятора двигателя J-79, что, по мнению специалистов фирмы, позволит получить около 40% экономии веса этих элементов.

В США существует 79 программ, в рамках которых ведутся работы по исследованию и практическому использованию композиционных материалов в авиастроении.

Анализируя полученные при выполнении экспериментальных работ результаты, иностранные специалисты считают, что композиты могут быть использованы при конструировании большинства узлов и деталей боевого самолёта. На рис. 1 показана схема планера боевого самолёта с указанием тех элементов, в конструкциях которых, по взглядам иностранных специалистов, возможно применение композиционных материалов.

Рис. 1. Схема планера боевого самолёта, изготовленного с использованием композиционных материалов: 1 - каркас остекления кабины; 2 - обшивка кабины; 3 - главные лонжероны; 4 - силовой набор крыла и хвостового оперения; 5 - пилон; 6 - обшивка фюзеляжа; 7 - предкрылки; 8 - закрылки, спойлеры, элероны: 9 - рули направления и высоты; 10 - места крепления двигателя и люки; 11 и 12 - конструкция пола кабины; 13 - передняя и задняя стенки кабины; 14 - основные элементы поперечного силового набора; 15 - бимсы;: 16 - топливный бак.

На создаваемом фирмой «Рокуэлл интернэшнл» стратегическом бомбардировщике В-1 внутренние и внешние лонжероны, расположенные в хвостовой части фюзеляжа, делаются с применением накладок из бороэпоксидного композиционного материала. Эти лонжероны состоят из сплошных боропластиковых накладок, соединённых с деталями из металлов. Металлические элементы (сталь, титан) обеспечивают прочность, а накладки из боропластика увеличивают жёсткость лонжеронов. Отмечается, что лонжероны такой конструкции не только обладают улучшенными механическими свойствами, но и на 28-44% легче цельнометаллических.

Предусматривая дальнейшее внедрение композиционных материалов в конструкцию бомбардировщика В-1, лаборатория материалов ВВС США заключила контракты с фирмой «Рокуэлл интернэшнл» на разработку киля из графитоэпоксидного и бороэпоксидного материалов, а с фирмой «Грумман» - на создание стабилизатора самолёта из этих материалов.

В соответствии с программой, осуществляемой фирмой «Дженерал дайнамикс» (по контракту с ВВС США), на изготовленной из высокопрочной стали нижней поверхности шарнирной опоры крыла истребителя-бомбардировщикa , устанавливаются усиливающие накладки из эпоксидного боропластика. Американские специалисты считают, что применение этих накладок более чем вдвое увеличивает усталостную прочность шарнирного соединения узла поворота крыла. На двух самолётах F-111A испытываются экспериментальные стабилизаторы из бороэпоксидного композиционного материала, которые, по данным иностранной печати, на 27% легче обычных.

В самолёте F-l4 применение композиционных материалов в силовой конструкции было предусмотрено в самом начале его проектирования. Из композиционного материала на основе бороволокна изготовляются четыре панели обшивки стабилизатора.

По данным иностранной печати, результаты проведённых испытании показали, что усталостные характеристики стабилизатора с обшивкой из боропластика в 2,5 раза выше заданных техническими требованиями, а но стоимости он в настоящее время эквивалентен цельнометаллическому. Общий вес стабилизатора с обшивкой из боропластика 350 кг; экономия в весе по сравнению со стабилизатором с титановой обшивкой 82 кг (или 10%). По сравнению со стабилизатором аналогичной конструкции из алюминиевых сплавов выигрыш в весе получается ещё больше - 117 кг (27%).

В конструкции самолёта F-15 (фирма «Макдоннелл Дуглас»), исходя из соображений обеспечения требуемой центровки с целью экономии веса хвостовой части самолёта, обшивка горизонтальных управляемых стабилизаторов и вертикального хвостового оперения выполнена из боропластика. По сообщениям зарубежной печати, завершены усталостные испытании планера самолёта F-15 с панелями обшивки из композиционных материалов. Продолжительность испытаний 10 тыс. ч., что в четыре раза превышает его нормальный ресурс. Затем были проведены статические испытания горизонтального управляемого стабилизатора при нагрузке в два раза больше расчётной разрушающей; стабилизатор выдержал и эти испытания. По сравнению с конструкцией горизонтального стабилизатора, выполненной из титана, экономия веса при использовании боропластиковых обшивок составила 22%.

Как отмечается в зарубежной печати, самолёт F-15 является первым военным самолётом ВВС США, на котором установлена тормозная система фирмы «Гудьир», детали которой изготовлены с использованием композиционного материала на основе углеродных волокон. Это обеспечило, по мнению американских специалистов, экономию веса (около 32 кг на каждый тормоз) и более плавное и в то же время более эффективное торможение, а также увеличило надёжность действия тормозной системы.

Фирма «Макдоннелл Дуглас» уже третий год ведёт исследования по специальной программе, предусматривающей применение композиционных материалов для различных элементов крыла самолёта F-15, что, по расчётам специалистов фирмы, позволит уменьшить вес крыла на 130-180 кг. В ходе прочностных испытаний крыло самолёта из композиционных материалов разрушилось при нагрузке, составляющей 110% расчётной разрушающей. Лётные испытания этого крыла планируется начать в 1976 году (в случае успешного завершения статических испытаний).

Иностранная печать сообщает, что высокая стоимость технической оснастки, необходимой дли изготовления деталей из таких материалов, не позволила в должном объёме использовать перспективные композиционные материалы. Однако применение композиционных материалов в конструкциях новых боевых самолётов США все возрастает. Опыт применения графитоэпоксидных композитных материалов, полученный Фирмой «Дженерал дайнемикс» при разработке самолёта F-111, учтён и при создании самолёта F-16 . Благодаря изготовлению обшивки киля, стабилизатора и руля направления из углепластика фирме удались снизить вес хвостовой части фюзеляжа самолёта F-16 примерно на 30%. В настоящее время фирма по контракту с ВВС разрабатывает переднюю часть фюзеляжа этого самолёта из графитоэпоксидных материалов.

Во время модернизации тяжёлого военно-транспортного самолёта С-5А при создании некоторых узлов и деталей планера самолёта (например, секции предкрылков) применяли композиционные материалы. На рис. 2 показана секция предкрылка, изготовленная с использованием бороэпоксидного материала, и обычная металлическая. Новая секция имеет повышенную прочность и жёсткость, она значительно легче металлической.

Рис. 2. Секция предкрылка тяжёлого военно-транспортного самолёта С-5А: вверху - изготовленная с использованием композиционных материалов; внизу - из алюминиевых сплавов

Предпринимаются попытки использовать композиционные материалы в вертолётостроении. В частности, с целью исследования возможности изготовления некоторых основных элементов конструкции вертолётов из таких материалов американские и западногерманские фирмы проводят ряд опытно-конструкторских работ. По данным иностранной печати, американская Фирма «Сикорский» участвует в программе, предусматривающей повышение усталостной долговечности и улучшение динамических характеристик вертолёта СН-54В за счёт упрочнения композиционными материалами его хвостовой балки. Сообщается, что в результате упрочнения стрингеров бороэпоксидным материалом ресурс планера вертолёта повысился в несколько раз, а вес снизился на 30% (рис. 3).


Рис. 3. Использование боропластика для усиления стрингеров хвостовой балки на тяжёлом вертолёте CH-54B.

В зарубежной печати сообщалось, что министерство обороны США заключило с фирмой «Хьюз» контракт стоимостью 1,2 млн, долларов на разработку из композиционных материалов лопасти несущего винта для вертолёта . По заявлению специалистов фирмы, применение композиционных материалов в конструкции лопасти позволит уменьшить её вес, сохранить прочностные характеристики, добиться относительной неуязвимости лопасти от пуль. Кроме того, такие лопасти будут иметь большой ресурс и малую стойкость, а их производство можно наладить на автоматизированной линии.

Широкое применение композиционных материалов в конструкции несущего винта запланировано также в рамках перспективной программы HLH, предусматривающей создание тяжёлого транспортно-десантного вертолёта максимальной грузоподъёмностью около 30 т. По данным иностранной печати, к настоящему времени фирма «Боинг», с которой министерство обороны США заключило контракт на выполнение работ по программе HLH, изготовила роторы с несущими винтами, в их конструкции использованы композиционные материалы.

На основе исследований, проводившихся крупнейшей американской вертолётостроительной фирмой «Сикорский» применительно к вертолёту CH-53D, сделан вывод о том, что широкое внедрение композиционных материалов в конструкциях вертолётов станет целесообразным в 80-х годах. Специалисты фирмы считают, что максимальная эффективность достигается при включении композиционных материалов в конструкцию фюзеляжа вертолёта; при этом в наиболее нагруженных элементах фюзеляжа следует применять материал на основе углерода. Проведённый анализ показал, что за счёт использования композиционных материалов вес конструкции вертолёта CH-53D может быть снижен на 18,5%.

Изучая опыт применения композиционных материалов в конструкциях самолётов, американские специалисты считают эти материалы с точки зрения веса и механических характеристик весьма перспективными для ракетно-космической техники. По сообщениям иностранной печати, в США при изготовлении головных частей ракет предполагается использовать композиционные материалы с углеволокнистой матрицей, обладающие высокой радиопрозрачностью. Сообщается также о проведении тепловых испытании сопла ракетного двигателя, выполненного целиком из композиционных материалов.

Из углепластиков в сочетании с алюминиевой сотовой конструкцией уже изготовляется ряд деталей искусственных спутников Земли, например каркасы антенн. Это обеспечило не только экономию веса по сравнению с алюминиевой конструкцией, но и стабильность размеров панелей, так как у углепластиков чрезвычайно низкий коэффициент теплового расширения (в 50 раз меньше, чем у металлов).

Композиционные материалы планируется широко использовать для изготовления некоторых элементов орбитальной ступени, разрабатываемой в США транспортно-космической системы «Шатл». В частности, для теплозащиты носка фюзеляжа, нижней поверхности носовой части фюзеляжа, передней кромки крыла будет применён композиционный материал «углерод-углерод». Фирмой «Боинг» разработана рама жидкостного реактивного двигателя основной двигательной установки орбитальной ступени, располагающаяся в хвостовой части фюзеляжа. Она сделана из бороэпоксидного композиционного материала в сочетании с элементами из титанового сплава. Эта конструкция, по данным фирмы, позволит по сравнению с обычной титановой достичь экономии в весе около 30%.

Исследования, выполненные рядом американских самолётостроительных фирм под руководством лаборатории материалов ВВС США, показали, что применение композиционных материалов в конструкции военных самолётов и вертолётов 80-х годов позволит не только значительно снизить их вес и стоимость, но и повысить живучесть.

По прогнозам зарубежных специалистов, к началу 80-х годов доля композиционных материалов в планере самолёта возрастёт до 50%. Это должно обеспечить 20-30% экономию веса в равной мере как для дозвуковых, так и сверхзвуковых самолётов. Достигнутое при этом снижение веса конструкции позволит увеличить запас топлива или боевую нагрузку или уменьшить размеры самолёта. Более того, считается, что высокие прочностные характеристики этих материалов могут привести к улучшению аэродинамических характеристик (путём уменьшения относительной толщины профиля и удлинения крыла), а в конечном итоге - к улучшению лётных характеристик самолёта.

Кресла предназначены для размещения в них и выполнения функциональных обязанностей пилота, размещения пассажиров, обеспечения комфортного полета, а также переносимости перегрузок пилотом и пассажирами вертолета в случае аварийной посадки.

Наши кресла настолько компактны, что подходят практически во все кабины.

Кресла не только удовлетворяют требованиям безопасности, но и обладают улучшенными эргономическими характеристиками.

При создании кресла были достигнуты следующие цели:

  • уменьшение веса
  • снижение стоимости
  • компактность
  • максимальная эргономика и комфорт
  • оригинальный дизайн

Кресло отличается эксклюзивным, современным дизайном. При разработке внедрены новые оригинальные инженерные решения. В процессе производства заложено использование передовых, инновационных материалов.

Кресло является серийным изделием, имеет взаимозаменяемые узлы и детали. Кресельное оборудование легко устанавливается на борту вертолета и располагается, как по полету, так и против полета. Каждое кресло надежно в эксплуатации и при нормальном, рабочем режиме требует минимальных эксплуатационных расходов.

Конструкция кресла выдерживает большие ударные нагрузки, при меньшем весе, по сравнению с креслами конкурентов.

Легкие кресла обеспечивают экономию энергоресурсов, а наряду с безопасностью - экономичную эксплуатацию и высокие эргономические характеристики.

Многоступенчатая система безопасности нашего вертолетного кресла снижает возможность получения травмы пассажиром и способствует сохранению его жизни. Технология энергопоглащения имеет высокий уровень надежности, эффективно справляется с поглощением энергии удара при тяжелой аварии или аварийной посадке.

Энергопоглощающее вертолетное кресло, рассчитано на перегрузку до 30g.

Элемент энергопоглощения одноразового действия.

В одной из модификаций кресла предусмотрена возможность установки, регулировки степени поглощения энергии удара, в зависимости от весовых характеристик пассажира (опция).

Система удерживания и фиксации состоит из: двух поясных ремней, двух плечевых ремней с инерционными катушками, замка фиксации ремней, системы регулировки ремней по длине и узлов крепления привязных ремней.

Подушки кресла спроектированы с минимальным смещением (утапливанием) и динамической отдачей сидящего. Подушки изготавливаются из самозатухающего материала в соответствии с АП27.853.

Конструкция кресла предусматривает установку подлокотников (опция).

Внедрение высокой степени безопасности кресла не повлияло на основные параметры, такие как малая масса, комфорт, доступность и ремонтопригодность.

СПЕЦИФИКАЦИЯ

КРЕСЛО СОСТОИТ ИЗ:

  • Каркаса кресла
  • Мягких подушек
  • Системы амортизации с узлами крепления
  • Система регулировки амортизации в зависимости от веса пассажира (опция)
  • Подлокотников (опция)
  • Подголовника
  • Привязной системы
  • Электропитание (опция)
  • Литературный карман
  • Чехол (текстиль/кожа) с предварительно выбранным цветовым решением

ОБСЛУЖИВАНИЕ

Быстро съемные элементы:

  • Мягкости
  • Чехлы

Узлы с применением регулировки:

  • Подлокотник

Подушки кресел и диванов.

Подушки авиационных кресел изготовлены из мягкого материала, который называется пенополиуретан или поролон. Проще - ППУ.

Поролон подушек авиационных кресел – это мягкий авиационный негорючий материал (проверенный специальными испытаниями на пожаробезопасность), предназначенный для использования в салоне пассажирского самолета, в котором нет форточек и окон, предназначенных для проветривания помещения в случае возгорания подушки.

В соответствии с авиационными правилами, подушка поролона, одетая в декоративный (а возможно еще и в дополнительный защитный) чехол из негорючей ткани, вторично подвергается огневым испытаниям вместе с чехлами в специальной лаборатории, для определения показателей горючести изделия в сборе.

В салоне пассажирского самолета должны применяться только те подушки, которые соответствуют требованиям авиационных правил, что подтверждается протоколом испытаний и штампом качества сертифицированного авиационного предприятия-производителя подушек.

В случае же применения бытового поролона для изготовления подушки авиационного кресла, испытания данная подушка не пройдет, пожар в самолете распространяется моментально, и при горении бытового поролона выделяются токсичные продукты (ксилол, Толуилендиизоцианат ), количество которых превышает допустимые нормы от 3 до 65 раз, что может привести пассажиров и членов экипажа к заболеваниям разной тяжести.

К сожалению, иногда встречаются случаи применения авиакомпаниями на самолете подушек из бытового поролона, микропорки для обуви, резины – горючих и опасных материалов. Даже в защитных чехлах из негорючей ткани, эти подушки моментально сгорят. В этом случае, шансы пассажира выжить во время пожара ничтожны.

ЗАПРЕЩЕНО!


В этих случаях, документы, подтверждающие летную годность подушек и разрешение для установки их на кресло, у авиакомпаний отсутствуют.


Однако подушки не вечны. В процессе длительной эксплуатации подушка теряет форму и становится плоской, поролон разрывается и распадается на части.

Каждый раз, когда пассажир садится на разорванную подушку, поток мелких, невидимых глазу частиц поролона попадает в воздушную среду пассажирского салона. И этим воздухом пассажиры, как взрослые так и дети дышат, даже не подозревая об этом.

Дышать или не дышать?


Задачей полезной модели является, разработка конструкции энергопоглощающего кресла вертолета, которая позволила бы расширить его функциональные возможности, снизить массу, упростить конструкцию кресла в целом.

Поставленная задача достигается тем, что кресло вертолета содержит чашку, каркас с направляющими, подвижно установленный на рельсах, узлы навески, выполненные в виде верхних и нижних ползунов, и энергопоглощающее устройство. При этом каркас включает две параллельные вертикальные стоики, каждая из которых выполненные в виде единого элемента форменной конструкции. Ферменная конструкция включает два вертикально расположенных, сходящихся к верху стержня, переходящих в ребра основания. При этом, стержни и ребра выполнены в поперечном сечении в виде тавра, и соединены между собой раскосами. Каркас в нижней части снабжен раскосами, соединяющими стойки, а основания стоек связаны между собой стержневым элементом, выполненным в виде трубы.

Решение поставленной задачи позволяет расширить функциональные возможностей энергопоглащающего кресла, обеспечить его работоспособность и увеличить диапазон углов возможных аварийных приземлений вертолета. Кроме того, решение поставленной задачи позволяет упростить конструкцию энергопоглощающего кресла и снизить его массу.

Формула 1 пункт, чертежи - 7 фигур.

Область техники

Полезная модель относится к области авиастроения, более конкретно к конструкциям агрегатов, комплектующих кабину, в частности к креслам. Полезная модель может быть использовано в любом виде транспорта, преимущественно на вертолете.

Уровень техники

Известно энергопоглощающее кресло летательного аппарата по патенту RU 2270138, 05.06.2004 год, класс B64D 25/04. Энергопоглощающее кресло летательного аппарата (например, вертолета) содержит каркас, включающий в себя сиденье и спинку, вертикальные стойки, верхний узел подвески, нижний узел подвески, и два амортизатора. Вертикальные стойки выполнены из металла с тремя нишами, предназначенными для облегчения конструкции. В нижней точке вертикальные стойки соединены с горизонтальными стойками. Между горизонтальными и вертикальными стойками для обеспечения необходимой жесткости установлен металлический раскос.

Наиболее близким по технической сущности и достигаемому эффекту является «Энергогасящее сидение члена экипажа летательного аппарата», по патенту RU 2154595 от 14.10.1998 г., класс B64D 25/04. Согласно изобретению, энергогасящее сиденье члена экипажа летательного аппарата содержит каркас с направляющими, на которые, посредством узлов навески подвижно установлено сидение и энергопоглощающее устройство (механизм стопорения) установленное на направляющих каркаса. Узлы навески, выполнены в виде верхних и нижних ползунов. Каркас выполнен в виде двух стоек, состоящих из монолитной детали включающей вертикальные элементы и горизонтальные элементы. Каркас подвижно установлен на рельсах, жестко закрепленных в кабине летательного аппарата.

Недостатками предложенных решений являются, высокая металлоемкость и массивность конструкции. Большое количество стыковочных узлов, которое снижает надежность работы кресла летательного аппарата.

Сущность полезной модели.

Задачей полезной модели является, разработка конструкции энергопоглощающего кресла вертолета, которая позволила бы расширить его функциональные возможностей, снизить массу, упростить конструкцию кресла в целом.

Поставленная задача достигается тем, что кресло вертолета содержит чашку кресла, каркас с направляющими, подвижно установленный на рельсах, узлы навески, выполненные в виде верхних и нижних ползунов, и энергопоглощающее устройство. При этом каркас включает две параллельные вертикальные стоики, каждая из которых выполненные в виде единого элемента ферменной конструкции. Ферменная конструкция включает два вертикально расположенных, сходящихся к верху стержня, переходящих в ребра основания. При этом, стержни и ребра выполнены в поперечном сечении в виде тавра, и соединены между собой раскосами. Каркас в нижней части снабжен раскосами, соединяющими стойки, а основания стоек связаны между собой стержневым элементом, выполненным в виде трубы.

Решение поставленной задачи позволяет расширить функциональные возможности энергопоглащающего кресла, обеспечить его работоспособность и увеличить диапазон углов возможных аварийных приземлений вертолета. Кроме того, решение поставленной задачи позволяет упростить конструкцию энергопоглощающего кресла и снизить его массу.

Краткое описание чертежей.

Полезная модель поясняется чертежами, на которых показаны:

фиг.1. - кресло энергопоглощающее вертолета с установленной чашкой сидения. Вид спереди;

фиг.2. - кресло энергопоглощающее вертолета с установленной чашкой сидения. Вид сбоку;

фиг.3. - каркас энергопоглощающего кресла вертолета. Вид сбоку;

фиг.4. - разрез П-П фиг 3;

фиг.5. - разрез С-С фиг 3;

фиг.6. - разрез Р-Р фиг 3;

фиг.7. - разрез Т-Т фиг 3.

Раскрытие полезной модели

Энергопоглощающее кресло вертолета (фиг.1, 2) включает в себя чашку кресла 1 с чехлом и мягкими элементами, каркас 2 выполненный с Т-образными направляющими, узлы навески, привязную систему 4 и механизмом продольного регулирования кресла 5 и энергопоглощающим устройством 3. Чашка кресла 1 подвижно установлена на Т-направляющих каркаса 2 при помощи узлов навески. Привязная система 4 и механизмом продольного регулирования кресла 5 установленные на чашке кресла 1. Узлы навески выполнены в виде верхних 17 и нижних ползунов 18. Ползуны жестко установлены на чашке 1 кресла, и подвижно в Т-образных направляющих каркаса 2.

Каркас 2 энергопоглощающего кресла вертолета (фиг.3-5) включает две параллельные вертикальные стоики 6, 7 каждая из которых выполнена в виде единого элемента ферменной конструкции. Форменная конструкция включает два вертикально расположенные, сходящихся к верху стержня 8, 9 (стойка 6) и 10, 11 (стойка 7). При этом внизу стержни переходят в верхние 12, 14 и нижние ребра основания 13, 15. Стержни и ребра выполнены в поперечном сечении в виде тавра, и соединены между собой раскосами 16. Тавр выполнен с полочкой и ребром. Ребра двух стержней одной стойки образуют Т-образную направляющую по всей высоте стойки (фиг.4). Т-образная направляющая предназначена для установки в ней узлов навески и устройства энергопоглощения.

Каркас 2 в нижней части снабжен раскосами 20 соединяющими стойки 6, 7, а основания стоек связаны между собой стержневым элементом 23, выполненным в виде трубы.

Стержни нижних ребер 13 и 15 образую паз 19 (фиг 1) для установки на рельсы 21. Рельсы 21 жестко закреплены на полу вертолета. В верхней части стоек установлен упор 22 в виде осей, для предотвращения выпадения верхних ползунов 17.

Стойки могут быть выполнены как штамповкой, так и фрезеровкой из цельного листа металла.

Работа энергопоглощающего кресла вертолета осуществляется следующим образом. При эксплуатационных нагрузках чашка кресла вместе с сидящим на нем человеком удерживается от перемещения по вертикальным стойкам с помощью энергопоглощающего устройств 3 за счет жесткости и трения. Основные нагрузки, действующие на чашку кресла 1 в продольном направлении, воспринимаются стойками 6, 7. При аварийном приземлении вертолета, когда ударная перегрузка, действующая на человека сидящего в кресле, превышает по своему значению допустимые пределы, то чашка кресла 1 перемещается вниз, воздействуя, через нижние узлы навески, на энергопоглощающее устройство 4.

Применение предлагаемой конструкции стоек энергопоглощающего кресла вертолета позволяет снизить его массу за счет стоек и упростить конструкцию кресла в целом. Форменная конструкция стоек позволяет обеспечить быстрый доступ ко всем узлам кресла и улучшить его эксплуатационные показатели. Кроме того, предлагаемая конструкция обладает минимальным количеством элементов и стыковочных узлов, что увеличивает ее надежность.

Кресло вертолета, содержащее чашку кресла, каркас с направляющими, подвижно установленный на рельсах, узлы навески, выполненные в виде верхних и нижних ползунов, и энергопоглощающее устройство, отличающееся тем, что каркас включает две параллельные вертикальные стойки, каждая из которых выполнена в виде единого элемента ферменной конструкции, состоящей из двух вертикально расположенных, сходящихся вверху стержней, переходящих в ребра основания, при этом стержни и ребра выполнены в поперечном сечении в виде тавра и соединены между собой раскосами, каркас в нижней части снабжен раскосами, соединяющими стойки, а основания стоек связаны между собой стержневым элементом, выполненным в виде трубы.

Рекомендуем почитать

Наверх