Самодельный адаптер с 12 на 5 вольт. Блок питания

Провод  03.08.2023
Провод 

В настоящее время импульсные преобразователи используются практически везде и всё чаще заменяют классические линейные стабилизаторы, на которых при больших токах выделяется значительная мощность в виде тепловых потерь. Предлагаемая схема является простым понижающим преобразователем Step-Down с напряжения 12 В на стандартное для USB 5 В и собирается она на основе популярной микросхемы LM2576T.

Устройство предназначено для работы с автомобильной проводкой 12 В и может использоваться для зарядки или питания GPS-навигаторов, мобильных телефонов, планшетов оснащенных разъемом USB .

В состоянии покоя система полностью отключена от питания авто, а во время работы выключается сразу же после отключения тока, потребляемого с его выхода (например, при отключении провода от USB-разъема). Запуск системы осуществляется через кратковременное нажатие на кнопку, но если в данный момент выход не подключен — преобразователь снова автоматически выключится.

Принципиальная схема преобразователя LM2576T


Схема преобразователя на микросхеме LM2576

Основой является уже упомянутый ранее чип U1 (LM2576T-ADJ), дроссель L1 (100uH) и диод Шоттки D1 (1N5822). Конденсатор C1 (100uF) фильтрует напряжение питания. Выходной фильтр представляет собой конденсатор C4 (470uF), а стабилитрон D4 (BZX85C5V1) мощностью 1.3 Ватт может защитить систему от возможного кратковременного повышения напряжения питания (жалко будет спалить дорогой смартфон из-за случайных ошибок).

Принцип действия устройства

Для начала стоит написать несколько слов о самой микросхеме LM2576T — контроллере преобразователя. Схема обеспечивает превосходную альтернативу для типовых 3-х контактных линейных стабилизаторов семейства LM317, предлагая гораздо более высокую эффективность и позволяя снизить потери. Очень большое преимущество микросхемы LM2576T — возможность отключения и перехода в режим Standby, в котором потребляемый ток всего 50 мкА. Эта функция не используется в данной схеме преобразователя, но стоит иметь в виду на будущее. LM2576T содержит в своем составе все необходимые компоненты для преобразователя, вместе с силовым транзисторным ключом, который может работать с токами до 3 А. Сборка требует подключения только нескольких внешних компонентов.

Важным элементом является делитель напряжения R10 (1,2 k), R11 (3,6 к), так как он отвечает за величину выходного напряжения. Степень деления подобрана так, чтобы при выходном напряжении 5 В на входе компаратора микросхемы U1 присутствовало напряжение 1.23 В. Внутренний компаратор микросхемы управляет транзистором, чтобы напряжение на выходе достигло нужного значения. Всё это дело стабилизирует напряжение и при изменении тока нагрузки.

Преимуществом данной схемы является возможность автоматического выключения питания после отключения тока, потребляемого от преобразователя. Отвечает за это транзистор T1 (BD140), а также резисторы R6 (10k) и R4 (1k). В выключенном состоянии резистор R6 обеспечивает правильное отключение транзистора T1. Запуск системы осуществляется через кратковременное замыкание кнопки S1 (типа сенсорная). Преобразователь включается, а транзистор T4 (2N7000) поддерживает далее низкий потенциал на базе T1. Резистор R4 ограничивает ток базы транзистора Т1.

Для контроля тока потребляемого нагрузкой, используется операционный усилитель U2 (LM358), в котором задействуется только одна половина. Он работает с усилением, равным 1000, установленным через резисторы R12 (100k) и R13 (100 Ом). Конденсатор C2 (100nF) фильтрует напряжение питания усилителя. Для управления транзистором T4 используется делитель напряжения R9 (10k), R7 (10k), осуществляющий деление выходного напряжения ОУ на 2.

Незначительное падение напряжения на измерительном резисторе R14 (0,2 Ома) порядка 5 мВ, нужно для поддержания работы преобразователя. Таким образом, для поддержания включенного состояния инвертора, достаточно потребляемого нагрузкой тока 25 мА.

Двухцветный светодиод D2 выполняет роль индикатора питания.

Когда же напряжение на выходе слишком высокое, открывается стабилитрон D3 (BZX55C5V1), а на резисторе R8 (2,2 k) появляется потенциал, достаточный для открытия транзистора T3 (2N7000). Сразу T2 (2N7000) будет закрыт и загорится красный светодиод. Ток светодиодов ограничен через резисторы R2 (560 Ом) и R3 (1k). При нормальной работе транзистор T2 пропускает ток (через R5) и горит зеленый светодиод.

Печатная плата инвертора 12/5 вольт


Печатная плата инвертора на м/с 2576

Печатная плата в PDF доступна для всем посетителям сайта . Монтаж преобразователя не сложен, все помещается на односторонней печатке. Пайку следует начинать с маленьких радиоэлементов — резисторов, потом диоды, транзисторы, и заканчивая конденсаторами и разъемами. Под микросхему не следует использовать панельки, особенно если система будет работать в автомобиле, так как из-за вибраций м/с может вылететь из гнезда. Если схема будет работать постоянно и в сложных условиях, без притока воздуха, то стоит прикрутить небольшой радиатор (кусок пластины) на транзистор Т1.

Как упростить конструкцию

Как уже говорилось, DC-DC инвертор имеет функцию автоматического отключения. Но можно при желании от нее отказаться, что неплохо упростит конструкцию. Резистор R14 тогда надо заменить перемычкой, а операционный усилитель U2 и элементы, которые с ним работают, не будут нужны вообще. Не нужна также установка транзистора T4. Вместо кнопки можно использовать любой переключатель соответствующей мощности, что позволит включить преобразователь тумблером. В случае, если схема будет работать в постоянном режиме, не нужен и транзистор T1 — соедините его эмиттер с коллектором с помощью перемычки.

Специализированный инвертирующий импульсный регулятор MC34063A разработан специально для преобразования входного напряжения низкого значения до более высокого. Микросхема включенная по этой схеме, предполагает диапазон входного напряжения от 4.5 до 6 В, а на выходе - 12 В 100 мА. MC34063A представляет собой монолитную цепь управления, содержащую основные функции, необходимые для DC-DC преобразователя - устройство состоит из блока внутренней температурной компенсации, опорного напряжения, компаратора, управляемого генератора с активной схемой ограничения тока, драйвер и транзисторы на выходе переключателя. Эта микросхема специально разработана, чтобы быть использована как понижающий, повышающий и инвертирующий преобразователь с минимальным числом внешних компонентов.

Особенности схемы

  • Вход 4.5 - 6V
  • Выход -12 В DC 100 мА
  • Регулируется по напряжению
  • Низкий ток в режиме ожидания нагрузки
  • Низкий уровень пульсаций выходного напряжения
  • Размеры печатной платы 32 х 35 мм

Таким образом, получается очень маленькая, простая в сборке и настройке конструкция, способная из стандартных 5-ти вольт от USB выхода получать 12 В, которые часто требуются для питания различных схем. Причём это значение можно настроить и на другой вольтаж. Правда ток выходной всего 0,1 А и заряжать автомобильные аккумуляторы от этой схемы точно не получится))

Для зарядки мобильных устройств обычно используются 5-вольтовые блоки питания, работающие от сетевого напряжения. Напряжение в 5 В можно также получить из 12-вольтовой сети автомобиля или от сетевого блока питания на 12 В. Это можно осуществить, используя несложные схемы с различными стабилизаторами напряжения.

В таких схемах стабилизатор будет ощутимо греться, что ухудшит его параметры выходного тока. Чтобы стабилизатор не перегрелся и не вышел из строя, его необходимо поместить на теплоотвод. Напряжение на входе в стабилизатор не должно быть выше 15 В.

Большинство мобильных устройств определяют подключение к зарядному устройству по наличию перемычки между вторым и третьим пинами. Но схемы коммутации USB могут быть и другими. Об этом лучше почитать в статье .

В схеме используются всего три компонента: сам стабилизатор напряжения и два 16-вольтовых конденсатора номиналом 100 и 330 нФ.

Стабилизаторы напряжения можно использовать советские: 2-амперный КР142ЕН5А или 1,5-амперный КР142ЕН5B. Естественно, возможна их замена на зарубежные аналоги, указанные на картинке, где изображен преобразователь на стабилизаторе КР142ЕН5:

В том случае если ваш преобразователь имеет на выходе ток не больше 0,1 А, то можно воспользоваться стабилизаторами, исполненными в корпусе SO-8, SOT-89 или TO-92. Схемы с такими конвертерами представлены на рисунках ниже:

Стоит добавить, что наипростейший способ сделать преобразователь - это вытащить плату из готового автомобильного адаптера для прикуривателя. Плату этого адаптера необходимо приспособить для работы вне автомобиля. Об этом можно найти много информации.

Дополнительная информация:

Такие стабилизаторы напряжения можно найти в телевизорах с кинескопами. Чаще всего там встречаются микросхемы серии 7805 и 7809.

При отсутствии конденсаторов схема вполне работоспособна. Стабилизатор обладает защитой от перегрева, правда, диапазон достаточно большой - от 65 до 140. Потом наблюдается резкое падение напряжения, и появляются пульсации микросхемы.

Другими словами, если схема питается от батареи, то во входном конденсаторе нет необходимости. Конденсатор на выходе рекомендуется ставить номиналом 1 мкФ и менее, иначе его разряд может сжечь схему, если произойдет короткое замыкание на входе (с той стороны, где располагается батарея).

Броски от индуктивной нагрузки не критичны для этой схемы.

USB-зарядник для Ni-Mh аккумуляторов своими руками

Всем доброго времени суток.

Итак, как-то я писал обзор на комплект автомобильной bluetooth гарнитуры, основной блок которой (та часть в которой находится динамик, микрофон и все кнопочки) питается от аккумулятора и монтируется на солнцезащитный козырек при помощи специальной металлической скобы. Собственно, этот самый обзор можно посмотреть . Так вот, за 7 месяцев эксплуатации, данный набор зарекомендовал себя только с хорошей стороны, если не считать одного, очень важного для меня, момента - системы питания. Используемый аккумулятор нельзя назвать емким, и в условиях реального использования, его заряда хватает примерно на неделю-полторы, после чего приходится его подзаряжать. Как обычно, садится аккумулятор в самый неподходящий момент, причем каких-либо уведомлений состоянии заряда аккумулятора не предусмотрено. Конечно, можно было бы просто подключить зарядное устройство и оставить все в таком состоянии, но тянущиеся через салон провода меня как-то смущают. В общем, надо было что-то делать и организовывать постоянное питание блока без лишних проводов и слабого аккумулятора. Выход из такой ситуации один - подключение его к проводке автомобиля, а для того, чтобы снизить напряжение с 12В до 5В и нужен этот самый преобразователь.

Просмотрев предложения на Aliexpress и eBay , мой выбор пал на преобразователь способный выдать 3А. Уж если брать, то с запасом - в случае необходимости, к нему можно будет подключить еще чего-нибудь:) Посылка была отправлена безтреком и провела в пути порядка 3 недель, после чего была успешно запихнута в почтовый ящик добрым почтальоном.

Преобразователь поставляется в запечатанном пакетике в котором отсутствуют специальные прорези для упрощения процесса его вскрытия. Без ножниц или ножа вскрыть пакетик весьма затруднительно.

Сам преобразователь весьма компактный - 6,5 х 2,7 х 1,5 сантиметров и представляет собой небольшую черную пластиковую коробочку с двумя "ушами" для крепления и 4 проводами, идущими из ее глубин. Кстати, он претендует на звание "водозащищенного" - вся начинка залита чем-то напоминающим битум:) С подключением проблем возникнуть не должно - вход и выход обозначены, точно так же, как и плюсовой и минусовой контакты.


Поскольку до совершения покупки было установлено, что без установленного внутрь аккумулятора, но с подключенным питанием мой bluetooth модуль не работает, то покупался преобразователь без каких-либо разъемов на проводах, поскольку их все-равно пришлось бы отрезать.

Сразу проверил как преобразователь справляется со своей основной задачей - понижением напряжения. С аккумулятора выдал 4,97В - отлично.


Долго думал как его лучше подключить к bluetooth модулю и не нашел ничего более простого, как припаять провода к контактам, через которые подается энергия с аккумулятора.

Напряжения на 100% заряженном аккумуляторе - 4,2В, а на преобразователе - 4,97В. Можно подключать и так - все будет работать. А можно понизить напряжение до уровня заряда аккумулятора.


Лично я сперва все спаял напрямую, но потом одумался и впаял предохранитель на 1А - он отлично поместился в отсеке для аккумулятора, в котором сейчас надобность отпала. Если использовать тонкие провода, то их можно пропустить под крышкой батарейного отсека без проделывания дополнительных отверстий в корпусе блока bluetooth.

В общем, готовая конструкция выглядела так:


Места спайки проводов позже заизолировал:)

Теперь осталось дело за малым - подключить все это к сети автомобиля. Тут все строго индивидуально, но мне повезло, в моей машинке есть разводка под люк, в которой есть постоянные 12В, причем электричество подается даже когда автомобиль заглушен, что обеспечивает работу гарнитуры 24 часа в сутки. Прячутся нужные мне провода за лампой освещения салона.


Подключаем, устанавливаем светильник обратно и проверяем работоспособность всей системы. Все завелось с первого раза. Ура! Цель достигнута. С bluetooth модуля я обломал ножки за которые крепилась металлическая пластина и прикрепил его за зеркалом заднего вида при помощи двухстороннего скотча. Теперь он на козырьке не болтается, в глаза не бросается и при этом работает отлично:)


Подводя итог всему, что написано выше, могу сказать, что обозреваемый преобразователь просто отлично подошел для моих потребностей. Во-первых, он реально понижает напряжение до нужного уровня. Во-вторых, у него очень компактные размеры, а значит его без проблем можно спрятать за обивкой потолка или в любом другом месте. В-третьих, в процессе работы он не греется, а если и греется, то нагрев минимальный - на ощупь изменения температуры определить не удалось. В-четвертых, он позволил избавиться от ненужных проводов из забыть о еженедельной зарядке аккумулятора. Ну и в-пятых, цена у него очень гуманная. Помимо моего примера, данный преобразователь отлично подойдет для подключения регистраторов, радар-детекторов и прочей автомобильной мелочевки, работающей от бортовой сети. В общем, я доволен покупкой на все 100%.

На этом, пожалуй, все. Спасибо за внимание и потраченное время.

Сразу после первого вояжа на машине с семьёй на море возникла идея сделать в автомобиле стационарную разводу розеток под USB для зарядки мобильных устройств. Кстати сейчас новые автомобили стали уже комплектовать с инверторами на 220В и соответственно розетками на 5В.

Я таких машин ещё не встречал.
Да, в продаже если и есть адаптеры на для мобильных ПК то они предназначены для зарядки одного, максимум двух устройств при условии, что второе устройство не такое уж мощное. У меня в машине и так постоянно подключены 3 адаптера, но спрятаны они под колодкой предохранителей.

А пассажиры пользуются адаптером, который втыкается в разъём в пепельнице, что мне не очень удобно, так как его постоянно задеваю при переключении передач. После дня пути обычно у пассажиров разрежаются все устройства и начинается возня с зарядками мобильников. Приходится даже свой навигатор отключать, чтобы зарядить чьё-нибудь устройство.

Можно было сделать, как делают многие, покупают колодку на несколько адаптеров и сопли проводов тянутся по всему салону. И так требуется устройство выдающие положенные 5 вольт и мощностью 10 А. Много? Прикинем: 4 телефона, потребляют около 1 А каждый, планшет порядка 2 А, навигатор больше 0,5 А видеорегистратор тоже 0,5 А и радар-детектор около 0,5 А. И того 7, 5 А.

В процессе было собрано 3 преобразователя, но не один не мог выдерживать и 3 А продолжительное время. Один так вообще загорелся.

Нормально заработала только эта схема.

Схема преобразователя DC/DC на MC34063

Плата устройства

Сборочный чертёж

Да, моя плата далека от идеала, умение разводить плату сравнимо с талантом. Полевик с диодом расположил так, чтобы можно было прицепить практически любой радиатор, сделав плату чуть длиннее, а крепёж уже по месту. Специально подгонять плату под корпус не стал в виду отсутствия такового. Все детали нашлись в первом раскуроченном блоке питания компьютера.

Для изготовления устройства понадобилось:

1. Конденсатор керамический С1 470 пФ (1шт)
2. Конденсатор электролитический С3,С5,С6 1000 мкФ, 16В (3шт)
3. Конденсатор электролитический С2 100 мкФ, 16В (1шт)
4. Конденсатор электролитический С4 470 мкФ, 25В лучше 50В(1шт)
5. Индуктивности DR1, DR2 типа гантелька (2шт)
6. Трансформатор импульсный DR3 кольцевой (1шт)
7. Индуктивность типа пенёк DR4 (1шт)
8. Винтовой клемник J1 (1шт)
9. Резистор R1 1,2 кОм (1шт)
10. Резистор R2 3,6 кОм (1шт)
11. Резистор R3 5,6 кОм (1шт)
12. Резистор R4 2,2 кОм (1шт)
13. Резистор R5 2,2 кОм или 1 кОм на 1ват (1шт)
14. Микроконтроллер U1 MC34063
15. Диод VD1, VD3 FR155 (2шт)
16. Диод VD2 SBL25L25CT (1шт)
17. Транзистор биполярный VT1 2SC1846 (1шт)
18. Полевой транзистор IRL3302 (1шт)
19. Панелька DIP8 (1шт)
20. Корпус по произвольным размерам

Основные компоненты: это сама микросхема U1, импульсный трансформатор DR3, мощный N канальный полевик VT2(может быть любым используемый в цепях питания) и диодная сборка VD2. Трансформатор VD3 изготовил из такого же трансформатора с того самого БП. Кольцо из пресспермалоя, желтого цвета. 27мм. Первичную обмотку набил проводом 2мм 22 витка, вторичную обмотку намотал проводом тоньше, 0,55 мм 44 витка.

Индуктивности DR1 DR2 типа гантелька взял как есть из БП. Индуктивность типа пенёк DR4 тоже самое. Транзистор и диод разместил на радиаторе от того же БП.

Всё собрал на печатной плате собственной разработки. В ходе лабораторных испытаний пришлось внести изменения в предложенную автором схему. Дело в том что сам автор указывает на то что резистор R5 греется, даже замена на более мощный резистор проблему не решает. В течении часа резистор этот у меня почернел и обуглился.

Решил попробовать увеличить сопротивление до 2,2кОм и всё греться он перестал. Транзистор VT1, перестраховался, заменил на более мощный. Трансформатор DR3 тоже сначала не много грелся, перемотал, добавил количество витков в первичную и во вторичную обмотки, стало 30 и 60.

Не знаю, что там с фронтами открытия полевого транзистора но схема работает нормально, при нагрузке в 2А устройство остаётся холодным. Радиаторы на транзистор и диод можно большие не ставить. Поставил на выходе +5В ферритовое кольцо, для уменьшения помех.

Вот мой первый, рабочий, испытательный прототип.

Испытание на сопротивление 1Ом сопротивление быстро нагрелось сила тока на фото.

И последние, кипятильник на 5В в работе. Смотрите силу тока на фото. Да вот тут уже начали греться транзистор с диодом.

Испытывал свой преобразователь на 5 А работал почти весь день так немного тёплый. Потом нашёл старый блок питания от монитора которого уже нет. Плату пустил в разбор, в корпус уместил свою схему. Транзистор и диод расположил на кулере от старого ноутбука. В противоположной стороне коробки просверлил ряд отверстий. Очень даже получилось ничего. Воздух будет прокачиваться через всю схему.

Готовое устройство на установку в автомобиль.

Розетки двойные под USB планирую врезать в одну в переднюю панель вместо кнопки-зглушки и вторую к задним пассажирам в подлокотник передних сидений. Также думаю одинарную розетку в панель передней левой стойки и подвести питание к видеорегистратору который находится у зеркала. По данной схеме можно собрать вообще универсальный блок питания, то есть добавить каскад преобразования из 12В в 19В для питания ноутбука, что планирую в будущем.

Рекомендуем почитать

Наверх